The Django Book

The Django Book

Table of contents

1.0, English
Chapter 1: Introduction to Django December 12, 2007
Chapter 2: Getting Started December 12, 2007
Chapter 3: The Basics of Dynamic Web Pages December 12, 2007
Chapter 4: The Django Template System December 12, 2007
Chapter 5: Interacting with a Database: Models December 12, 2007
Chapter 6: The Django Administration Site December 12, 2007
Chapter 7: Form Processing December 12, 2007
Chapter 8: Advanced Views and URLconfs December 12, 2007
Chapter 9: Generic Views December 12, 2007
Chapter 10: Extending the Template Engine December 12, 2007
Chapter 11: Generating Non-HTML Content December 12, 2007
Chapter 12: Sessions, Users, and Registration December 12, 2007
Chapter 13: Caching December 12, 2007
Chapter 14: Other Contributed Subframeworks December 12, 2007
Chapter 15: Middleware December 12, 2007
Chapter 16: Integrating with Legacy Databases and Applications December 12, 2007
Chapter 17: Extending Django's Admin Interface December 12, 2007
Chapter 18: Internationalization December 12, 2007
Chapter 19: Security December 12, 2007
Chapter 20: Deploying Django December 12, 2007

Appendix A: Case Studies December 12, 2007

Appendix B: Model Definition Reference December 12, 2007

http://www.djangobook.com/en/1.0/[2009.01.07. 10:38:25]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

The Django Book

Appendix C: Database APl Reference
Appendix D: Generic View Reference
Appendix E: Settings

Appendix F: Built-in Template Tags and Filters
Appendix G: The django-admin Utility

Appendix H: Request and Response Objects

GNU Free Document License

http://www.djangobook.com/en/1.0/[2009.01.07. 10:38:25]

December

December

December

December

December

December

12,

12,

12,

12,

12,

12,

2007

2007

2007

2007

2007

2007

http://www.djangobook.com/en/1.0/appendixF/
http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 1: Introduction to Django

The Dj angO BOOk table of contents next »

Chapter 1: Introduction to Django

This book is about Django, a Web development framework that saves you time and makes Web development a
joy. Using Django, you can build and maintain high-quality Web applications with minimal fuss.

At its best, Web development is an exciting, creative act; at its worst, it can be a repetitive, frustrating
nuisance. Django lets you focus on the fun stuff — the crux of your Web application — while easing the pain of
the repetitive bits. In doing so, it provides high-level abstractions of common Web development patterns,
shortcuts for frequent programming tasks, and clear conventions for how to solve problems. At the same time,
Django tries to stay out of your way, letting you work outside the scope of the framework as needed.

The goal of this book is to make you a Django expert. The focus is twofold. First, we explain, in depth, what
Django does and how to build Web applications with it. Second, we discuss higher-level concepts where
appropriate, answering the question “How can | apply these tools effectively in my own projects?” By reading
this book, you’ll learn the skills needed to develop powerful Web sites quickly, with code that is clean and easy
to maintain.

In this chapter, we provide a high-level overview of Django.

What Is a Web Framework?

Django is a prominent member of a new generation of Web frameworks. So what exactly does that term
mean?

To answer that question, let’s consider the design of a Web application written using the Common Gateway
Interface (CGI) standard, a popular way to write Web applications circa 1998. In those days, when you wrote
a CGI application, you did everything yourself — the equivalent of baking a cake from scratch. For example,
here’s a simple CGI script, written in Python, that displays the ten most recently published books from a
database:

#1/usr/bin/python
import MySQLdb

print "Content-Type: text/html™

print

print "<html><head><title>Books</title></head>"
print "<body>"

print "<hl>Books</h1>"

print ""

connection = MySQLdb.connect(user="me", passwd="letmein®, db="my db")
cursor = connection.cursor()
cursor .execute("'SELECT name FROM books ORDER BY pub_date DESC LIMIT 10)
for row in cursor.fetchall():

print "%s</1i>" % row[O]

print “"
print "</body></html>"

http://www.djangobook.com/en/1.0/chapter01/[2009.01.07. 10:38:35]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 1: Introduction to Django

connection.close()

This code is straightforward. First, it prints a “Content-Type” line, followed by a blank line, as required by CGI.
It prints some introductory HTML, connects to a database and executes a query that retrieves the latest ten
books. Looping over those books, it generates an HTML unordered list. Finally, it prints the closing HTML and
closes the database connection.

With a one-off dynamic page such as this one, the write-it-from-scratch approach isn’t necessarily bad. For
one thing, this code is simple to comprehend — even a novice developer can read these 16 lines of Python and
understand all it does, from start to finish. There’s nothing else to learn; no other code to read. It's also simple
to deploy: just save this code in a file called latestbooks.cgi, upload that file to a Web server, and visit that
page with a browser.

But as a Web application grows beyond the trivial, this approach breaks down, and you face a number of
problems:

= What happens when multiple pages need to connect to the database? Surely that database-connecting
code shouldn’t be duplicated in each individual CGI script, so the pragmatic thing to do would be to
refactor it into a shared function.

= Should a developer really have to worry about printing the “Content-Type” line and remembering to close
the database connection? This sort of boilerplate reduces programmer productivity and introduces
opportunities for mistakes. These setup- and teardown-related tasks would best be handled by some
common infrastructure.

= What happens when this code is reused in multiple environments, each with a separate database and
password? At this point, some environment-specific configuration becomes essential.

= What happens when a Web designer who has no experience coding Python wishes to redesign the page?
Ideally, the logic of the page — the retrieval of books from the database — would be separate from the
HTML display of the page, so that a designer could edit the latter without affecting the former.

These problems are precisely what a Web framework intends to solve. A Web framework provides a

programming infrastructure for your applications, so that you can focus on writing clean, maintainable code
without having to reinvent the wheel. In a nutshell, that’s what Django does.

The MVC Design Pattern

Let’s dive in with a quick example that demonstrates the difference between the previous approach and that
undertaken using a Web framework. Here’s how you might write the previous CGI code using Django:

models.py (the database tables)

from django.db import models

class Book(models.Model):
name = models.CharField(maxlength=50)
pub_date = models.DateField()

views.py (the business logic)

from django.shortcuts import render_to_response
from models import Book

def latest_books(request):

book list = Book.objects.order_by("-pub_date")[:10]
return render_to_response("latest books.html®, {"book list": book list})

http://www.djangobook.com/en/1.0/chapter01/[2009.01.07. 10:38:35]

Chapter 1: Introduction to Django

urls.py (the URL configuration)

from django.conf.urls.defaults import *
import views

urlpatterns = patterns("",
(r-latest/$", views.latest books),

latest_books.html (the template)

<html><head><title>Books</title></head>
<body>

<h1>Books</h1>

<ull>

{% for book in book list %}

{{ book.name }}</1i>

{% endfor %}

</body></html>

Don’t worry about the particulars of how this works just yet — we just want you to get a feel for the overall
design. The main thing to note here is the separation of concerns:

= The models.py file contains a description of the database table, as a Python class. This is called a model.
Using this class, you can create, retrieve, update, and delete records in your database using simple Python
code rather than writing repetitive SQL statements.

= The views.py file contains the business logic for the page, in the latest_books() function. This function
is called a view.

= The urls.py file specifies which view is called for a given URL pattern. In this case, the URL /latest/ will
be handled by the latest_books() function.

= The latest _books.html is an HTML template that describes the design of the page.

Taken together, these pieces loosely follow the Model-View-Controller (MVC) design pattern. Simply put, MVC
defines a way of developing software so that the code for defining and accessing data (the model) is separate
from request routing logic (the controller), which in turn is separate from the user interface (the view).

A key advantage of such an approach is that components are loosely coupled. That is, each distinct piece of a
Django-powered Web application has a single key purpose and can be changed independently without
affecting the other pieces. For example, a developer can change the URL for a given part of the application
without affecting the underlying implementation. A designer can change a page’s HTML without having to
touch the Python code that renders it. A database administrator can rename a database table and specify the
change in a single place, rather than having to search and replace through a dozen files.

In this book, each component of this stack gets its own chapter. For example, Chapter 3 covers views, Chapter
4 covers templates, and Chapter 5 covers models. Chapter 5 also discusses Django’s MVC philosophies in
depth.

Django’s History

Before we dive into more code, we should take a moment to explain Django’s history. It's helpful to
understand why the framework was created, because a knowledge of the history will put into context why
Django works the way it does.

http://www.djangobook.com/en/1.0/chapter01/[2009.01.07. 10:38:35]

Chapter 1: Introduction to Django

If you’ve been building Web applications for a while, you’re probably familiar with the problems in the CGI
example we presented earlier. The classic Web developer’s path goes something like this:

Write a Web application from scratch.
Write another Web application from scratch.
Realize the application from step 1 shares much in common with the application from step 2.

Refactor the code so that application 1 shares code with application 2.

o & Nk

Repeat steps 2-4 several times.

6. Realize you've invented a framework.

This is precisely how Django itself was created!

Django grew organically from real-world applications written by a Web development team in Lawrence, Kansas.
It was born in the fall of 2003, when the Web programmers at the Lawrence Journal-World newspaper, Adrian
Holovaty and Simon Willison, began using Python to build applications. The World Online team, responsible for
the production and maintenance of several local news sites, thrived in a development environment dictated by
journalism deadlines. For the sites — including LJWorld.com, Lawrence.com, and KUsports.com — journalists
(and management) demanded that features be added and entire applications be built on an intensely fast
schedule, often with only days’ or hours’ notice. Thus, Adrian and Simon developed a time-saving Web
development framework out of necessity — it was the only way they could build maintainable applications
under the extreme deadlines.

In summer 2005, after having developed this framework to a point where it was efficiently powering most of
World Online’s sites, the World Online team, which now included Jacob Kaplan-Moss, decided to release the
framework as open source software. They released it in July 2005 and named it Django, after the jazz guitarist
Django Reinhardt.

Although Django is now an open source project with contributors across the planet, the original World Online
developers still provide central guidance for the framework’s growth, and World Online contributes other
important aspects such as employee time, marketing materials, and hosting/bandwidth for the framework’s
Web site (http://www.djangoproject.com/).

This history is relevant because it helps explain two key matters. The first is Django’s “sweet spot.” Because
Django was born in a news environment, it offers several features (particularly its admin interface, covered in
Chapter 6) that are particularly well suited for “content” sites — sites like eBay, craigslist.org, and
washingtonpost.com that offer dynamic, database-driven information. (Don’t let that turn you off, though —
although Django is particularly good for developing those sorts of sites, that doesn’t preclude it from being an
effective tool for building any sort of dynamic Web site. There’s a difference between being particularly
effective at something and being ineffective at other things.)

The second matter to note is how Django’s origins have shaped the culture of its open source community.
Because Django was extracted from real-world code, rather than being an academic exercise or commercial
product, it is acutely focused on solving Web development problems that Django’s developers themselves have
faced — and continue to face. As a result, Django itself is actively improved on an almost daily basis. The
framework’s developers have a keen interest in making sure Django saves developers time, produces
applications that are easy to maintain, and performs well under load. If nothing else, the developers are
motivated by their own selfish desires to save themselves time and enjoy their jobs. (To put it bluntly, they eat
their own dog food.)

How to Read This Book

In writing this book, we tried to strike a balance between readability and reference, with a bias toward
readability. Our goal with this book, as stated earlier, is to make you a Django expert, and we believe the best
way to teach is through prose and plenty of examples, rather than a providing an exhaustive but bland catalog
of Django features. (As someone once said, you can’t expect to teach somebody how to speak merely by
teaching them the alphabet.)

With that in mind, we recommend that you read Chapters 1 through 7 in order. They form the foundation of
how to use Django; once you've read them, you'll be able to build Django-powered Web sites. The remaining

http://www.djangobook.com/en/1.0/chapter01/[2009.01.07. 10:38:35]

http://www.djangoproject.com/

Chapter 1: Introduction to Django
chapters, which focus on specific Django features, can be read in any order.

The appendixes are for reference. They, along with the free documentation at http://www.djangoproject.com/,
are probably what you'’ll flip back to occasionally to recall syntax or find quick synopses of what certain parts of
Django do.

Required Programming Knowledge

Readers of this book should understand the basics of procedural and object-oriented programming: control
structures (if, while, and for), data structures (lists, hashes/dictionaries), variables, classes, and objects.

Experience in Web development is, as you may expect, very helpful, but it’s not required to read this book.
Throughout the book, we try to promote best practices in Web development for readers who lack this type of
experience.

Required Python Knowledge

At its core, Django is simply a collection of libraries written in the Python programming language. To develop a
site using Django, you write Python code that uses these libraries. Learning Django, then, is a matter of
learning how to program in Python and understanding how the Django libraries work.

If you have experience programming in Python, you should have no trouble diving in. By and large, the Django
code doesn’t perform “black magic” (i.e., programming trickery whose implementation is difficult to explain or
understand). For you, learning Django will be a matter of learning Django’s conventions and APIs.

If you don’t have experience programming in Python, you're in for a treat. It’s easy to learn and a joy to use!
Although this book doesn’t include a full Python tutorial, it highlights Python features and functionality where
appropriate, particularly when code doesn’t immediately make sense. Still, we recommend you read the official
Python tutorial, available online at http://docs.python.org/tut/. We also recommend Mark Pilgrim’s free book
Dive Into Python, available at http://www.diveintopython.org/ and published in print by Apress.

New Django Features

As we noted earlier, Django is frequently improved, and it will likely have a number of useful — even essential
— new features by the time this book is published. Thus, our goal as authors of this book is twofold:

= Make sure this book is as “future-proof” as possible, so that whatever you read here will still be relevant in
future Django versions

= Actively update this book on its Web site, http://www.djangobook.com/, so you can access the latest and
greatest documentation as soon as we write it

If you want to implement something with Django that isn’t explained in this book, check the latest version of
this book on the aforementioned Web site, and also check the official Django documentation.

Getting Help

One of the greatest benefits of Django is its kind and helpful user community. For help with any aspect of
Django — from installation, to application design, to database design, to deployment — feel free to ask
questions online.

= The django-users mailing list is where thousands of Django users hang out to ask and answer questions.
Sign up for free at http://www.djangoproject.com/r/django-users.

= The Django IRC channel is where Django users hang out to chat and help each other in real time. Join the
fun by logging on to #django on the Freenode IRC network.

What’s Next

In the next chapter, we’ll get started with Django, covering installation and initial setup.

http://www.djangobook.com/en/1.0/chapter01/[2009.01.07. 10:38:35]

http://www.djangoproject.com/
http://docs.python.org/tut/
http://www.diveintopython.org/
http://www.djangobook.com/
http://www.djangoproject.com/r/django-users

Chapter 1: Introduction to Django

table of contents next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter01/[2009.01.07. 10:38:35]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 2: Getting Started

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 2: Getting Started

We think it's best to get a running start. The details and extent of the Django framework will be fleshed out in
the later chapters, but for now, trust us, this chapter will be fun.

Installing Django is easy. Because Django runs anywhere Python does, Django can be configured in many
ways. We cover the common scenarios for Django installations in this chapter. Chapter 20 covers deploying
Django to production.

Installing Python

Django is written in 100% pure Python code, so you’ll need to install Python on your system. Django requires
Python 2.3 or higher.

If you're on Linux or Mac OS X, you probably already have Python installed. Type pyt hon at a command
prompt (or in Terminal, in OS X). If you see something like this, then Python is installed:

Python 2.4.1 (#2, Mar 31 2005, 00:05:10)

[GCC 3.3 20030304 (Apple Conputer, Inc. build 1666)] on darw n

Type "hel p", "copyright", "credits" or "license" for nore information.
>>>

Otherwise, if you see an error such as "conmand not found", you’ll have to download and install Python. See
http://www.python.org/download/ to get started. The installation is fast and easy.

Installing Django

In this section, we cover two installation options: installing an official release and installing from Subversion.

Installing an Official Release

Most people will want to install the latest official release from http://www.djangoproject.com/download/.
Django uses the standard Python di st uti | s installation method, which in Linux land looks like this:

1. Download the tarball, which will be nhamed something like Dj ango- 0. 96. tar. gz.
2. tar xzvf D ango-*.tar.gz.

3. cd D ango- *.

4. sudo python setup.py install.

On Windows, we recommend using 7-Zip to handle all manner of compressed files, including . tar. gz. You can
download 7-Zip from http://www.djangoproject.com/r/7zip/.

Change into some other directory and start pyt hon. If everything worked, you should be able to import the
module dj ango:

>>> jnport django

>>> dj ango. VERSI ON
(0, 96, None)

http://www.djangobook.com/en/1.0/chapter02/[2009.01.07. 10:38:43]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257
http://www.python.org/download/
http://www.djangoproject.com/download/
http://www.djangoproject.com/r/7zip/

Chapter 2: Getting Started

Note

The Python interactive interpreter is a command-line program that lets you write a Python
program interactively. To start it, just run the command pyt hon at the command line. Throughout
this book, we feature example Python code that’s printed as if it's being entered in the interactive
interpreter. The triple greater-than signs (>>>) signify a Python prompt.

Installing Django from Subversion

If you want to work on the bleeding edge, or if you want to contribute code to Django itself, you should install
Django from its Subversion repository.

Subversion is a free, open source revision-control system similar to CVS, and the Django team uses it to
manage changes to the Django codebase. You can use a Subversion client to grab the very latest Django
source code and, at any given time, you can update your local version of the Django code, known as your local
checkout, to get the latest changes and improvements made by Django developers.

The latest and greatest Django development code is referred to as the trunk. The Django team runs production
sites on trunk and strives to keep it stable.

To grab the latest Django trunk, follow these steps:

1. Make sure you have a Subversion client installed. You can get the software free from
http://subversion.tigris.org/, and you can find excellent documentation at http://svnbook.red-bean.com/.

2. Check out the trunk using the command
svn co http://code. dj angoproj ect.con svn/django/trunk djtrunk.

3. Create si t e- packages/ dj ango. pt h and add the dj t r unk directory to it, or update your PYTHONPATH to
point to dj t runk.
4. Place dj t runk/ dj ango/ bi n on your system PATH. This directory includes management utilities such as

dj ango- adni n. py.

Tip:

If . pt h files are new to you, you can learn more about them at
http://www.djangoproject.com/r/python/site-module/.

After downloading from Subversion and following the preceding steps, there’s no need to
pyt hon setup. py instal |l —you’ve just done the work by hand!

Because the Django trunk changes often with bug fixes and feature additions, you’ll probably want to update it
every once in a while — or hourly, if you're really obsessed. To update the code, just run the command

svn updat e from within the dj t r unk directory. When you run that command, Subversion will contact
http://code.djangoproject.com, determine if any code has changed, and update your local version of the code
with any changes that have been made since you last updated. It's quite slick.

Setting Up a Database

Django’s only prerequisite is a working installation of Python. However, this book focuses on one of Django’s
sweet spots, which is developing database-backed Web sites, so you’ll need to install a database server of
some sort, for storing your data.

If you just want to get started playing with Django, skip ahead to the “Starting a Project” section—but trust
us, you'll want to install a database eventually. All of the examples in the book assume you have a database
set up.

As of the time of this writing, Django supports three database engines:

= PostgreSQL (http://www.postgresqgl.org/)

http://www.djangobook.com/en/1.0/chapter02/[2009.01.07. 10:38:43]

http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://www.djangoproject.com/r/python/site-module/
http://code.djangoproject.com/
http://www.postgresql.org/

Chapter 2: Getting Started

SQLite 3 (http://www.sqglite.org/)
= MySQL (http://www.mysql.com/)

Work is in progress to support Microsoft SQL Server and Oracle. The Django Web site will always have the
latest information about supported databases.

We’'re quite fond of PostgreSQL ourselves, for reasons outside the scope of this book, so we mention it first.
However, all the engines listed here will work equally well with Django.

SQLite deserves special notice as a development tool. It's an extremely simple in-process database engine that
doesn’t require any sort of server setup or configuration. It's by far the easiest to set up if you just want to
play around with Django, and it’s even included in the standard library of Python 2.5.

On Windows, obtaining database driver binaries is sometimes an involved process. Since you're just getting
started with Django, we recommend using Python 2.5 and its built-in support for SQLite. Compiling driver
binaries is a downer.

Using Django with PostgreSQL

If you're using PostgreSQL, you’ll need the psycopg package available from
http://www.djangoproject.com/r/python-pgsql/. Take note of whether you’re using version 1 or 2; you’ll need
this information later.

If you’re using PostgreSQL on Windows, you can find precompiled binaries of psycopg at
http://www.djangoproject.com/r/python-pgsql/windows/.

Using Django with SQLite 3

If you’re using a Python version over 2.5, you already have SQLite. If you're working with Python 2.4 or older,
you’'ll need SQLite 3— not version 2—from http://www.djangoproject.com/r/sqlite/ and the pysql i t e package
from http://www.djangoproject.com/r/python-sqglite/. Make sure you have pysql i te version 2.0.3 or higher.

On Windows, you can skip installing the separate SQLite binaries, since they’re statically linked into the
pysqlite binaries.

Using Django with MySQL

Django requires MySQL 4.0 or above; the 3.x versions don’t support nested subqueries and some other fairly
standard SQL statements. You'll also need the MySQLdb package from http://www.djangoproject.com/r/python-
mysql/.

Using Django Without a Database

As mentioned earlier, Django doesn’t actually require a database. If you just want to use it to serve dynamic
pages that don’t hit a database, that’s perfectly fine.

With that said, bear in mind that some of the extra tools bundled with Django do require a database, so if you
choose not to use a database, you’ll miss out on those features. (We highlight these features throughout this
book.)

Starting a Project

A project is a collection of settings for an instance of Django, including database configuration, Django-specific
options, and application-specific settings.

If this is your first time using Django, you’ll have to take care of some initial setup. Create a new directory to
start working in, perhaps something like / hone/ user nane/ dj code/ , and change into that directory.

Note

=

http://www.djangobook.com/en/1.0/chapter02/[2009.01.07. 10:38:43]

http://www.sqlite.org/
http://www.mysql.com/
http://www.djangoproject.com/r/python-pgsql/
http://www.djangoproject.com/r/python-pgsql/windows/
http://www.djangoproject.com/r/sqlite/
http://www.djangoproject.com/r/python-sqlite/
http://www.djangoproject.com/r/python-mysql/
http://www.djangoproject.com/r/python-mysql/

Chapter 2: Getting Started

) dj ango- admi n. py should be on your system path if you installed Django via its set up. py utility.
If you checked out from Subversion, you can find it in dj t r unk/ dj ango/ bi n. Since you'll be using
dj ango- admi n. py often, consider adding it to your path. On Unix, you can do so by symlinking
from /usr /| ocal / bi n, using a command such as
sudo I n -s /path/to/django/bin/django-adm n.py /usr/local/bin/django-adnm n.py. On
Windows, you’ll need to update your PATH environment variable.

Run the command dj ango- adni n. py startproject mnysite to create a nysite directory in your current
directory.

Let’s look at what st art proj ect created:

nysite/
_init__.py
manage. py
settings. py
urls. py

These files are as follows:

= _init__.py: A file required for Python treat the directory as a package (i.e., a group of modules)
= nanage. py: A command-line utility that lets you interact with this Django project in various ways
= settings. py: Settings/configuration for this Django project

= urls.py: The URL declarations for this Django project; a “table of contents” of your Django-powered site

Where Should This Directory Live?

If your background is in PHP, you're probably used to putting code under the Web server’s
document root (in a place such as / var/ ww). With Django, you don’t do that. It's not a good idea
to put any of this Python code within your Web server’s document root, because in doing so you
risk the possibility that people will be able to view your code over the Web. That’s not good for
security.

Put your code in some directory outside of the document root.

The Development Server

Django includes a built-in, lightweight Web server you can use while developing your site. We’ve included this
server so you can develop your site rapidly, without having to deal with configuring your production Web
server (e.g., Apache) until you’re ready for production. This development server watches your code for
changes and automatically reloads, helping you make many rapid changes to your project without needing to
restart anything.

Change into the nysi t e directory, if you haven't already, and run the command
pyt hon manage. py runserver. You'll see something like this:

Val i dati ng nodel s. ..
0 errors found.

Dj ango version 1.0, using settings 'mysite.settings'
Devel opment server is running at http://127.0.0.1: 8000/
Quit the server with CONTROL-C.

Although the development server is extremely nice for, well, development, resist the temptation to use this

server in anything resembling a production environment. The development server can handle only a single
request at a time reliably, and it has not gone through a security audit of any sort. When the time comes to

http://www.djangobook.com/en/1.0/chapter02/[2009.01.07. 10:38:43]

Chapter 2: Getting Started

launch your site, see Chapter 20 for information on how to deploy Django.

Changing the Host or the Port

By default, the runserver command starts the development server on port 8000, listening only
for local connections. If you want to change the server’s port, pass it as a command-line
argument:

pyt hon manage. py runserver 8080

You can also change the IP address that the server listens on. This is especially helpful if you’d
like to share a development site with other developers. The following:

pyt hon nmanage. py runserver 0.0.0.0:8080

will make Django listen on any network interface, thus allowing other computers to connect to the
development server.

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web browser. You'll see a “Welcome to
Django” page shaded a pleasant pastel blue. It worked!

What’s Next?

Now that you have everything installed and the development server running, in the next chapter you’ll write
some basic code that demonstrates how to serve Web pages using Django.

« previous ¢ table of contents

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter02/[2009.01.07. 10:38:43]

next »

http://www.djangobook.com/license/
http://127.0.0.1:8000/
http://mediatemple.net/

Chapter 3: The Basics of Dynamic Web Pages

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 3: The Basics of Dynamic Web Pages

In the previous chapter, we explained how to set up a Django project and run the Django development server.
Of course, that site doesn’t actually do anything useful yet—all it does is display the “It worked!” message.
Let’s change that. This chapter introduces how to create dynamic Web pages with Django.

Your First View: Dynamic Content

As our first goal, let’s create a Web page that displays the current date and time. This is a good example of a
dynamic Web page, because the contents of the page are not static—rather, the contents change according to
the result of a computation (in this case, a calculation of the current time). This simple example doesn’t
involve a database or any sort of user input—just the output of your server’s internal clock.

To create this page, we’ll write a view function. A view function, or view for short, is simply a Python function
that takes a Web request and returns a Web response. This response can be the HTML contents of a Web
page, or a redirect, or a 404 error, or an XML document, or an image ... or anything, really. The view itself
contains whatever arbitrary logic is necessary to return that response. This code can live anywhere you want,
as long as it’'s on your Python path. There’s no other requirement—no “magic,” so to speak. For the sake of
putting the code somewhere, let’s create a file called vi ews. py in the nysi t e directory, which you created in
the previous chapter.

Here’s a view that returns the current date and time, as an HTML document:

from dj ango. http inport HttpResponse
i nport datetinme

def current_datetine(request):
now = datetine.datetinme. nowm)
htm = "<htm ><body>It is now %. </body></htm >" % now
return Htt pResponse(htm)

Let’s step through this code one line at a time:

= First, we import the class Ht t pResponse, which lives in the dj ango. htt p module. See Appendix H for
further details on the Ht t pRequest and Ht t pResponse objects.

= Then we import the dat et i mre module from Python’s standard library, the set of useful modules that
comes with Python. The dat et i ne module contains several functions and classes for dealing with dates
and times, including a function that returns the current time.

= Next, we define a function called current dateti ne. This is the view function. Each view function takes
an Htt pRequest object as its first parameter, which is typically named r equest .

Note that the name of the view function doesn’t matter; it doesn’t have to be named in a certain way in
order for Django to recognize it. We're calling it current _dat eti ne here, because that name clearly
indicates what it does, but it could just as well be named super _duper _awesone_current _ti ne, or
something equally revolting. Django doesn’t care. The next section explains how Django finds this
function.

= The first line of code within the function calculates the current date/time, as a dat eti ne. dat et i ne object,

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 3: The Basics of Dynamic Web Pages

and stores that as the local variable now.

= The second line of code within the function constructs an HTML response using Python’s format-string
capability. The % within the string is a placeholder, and the percent sign after the string means “Replace
the % with the value of the variable now.” (Yes, the HTML is invalid, but we're trying to keep the example
simple and short.)

= Finally, the view returns an Ht t pResponse object that contains the generated response. Each view
function is responsible for returning an Ht t pResponse object. (There are exceptions, but we’ll get to those
later.)

Django’s Time Zone

Django includes a TI ME_ZONE setting that defaults to Aneri ca/ Chi cago. This probably isn't where
you live, so you might want to change it in your setti ngs. py. See Appendix E for details.

Mapping URLs to Views

So, to recap, this view function returns an HTML page that includes the current date and time. But how do we
tell Django to use this code? That’s where URLconfs come in.

A URLconf is like a table of contents for your Django-powered Web site. Basically, it's a mapping between URL
patterns and the view functions that should be called for those URL patterns. It’'s how you tell Django, “For this
URL, call this code, and for that URL, call that code.” Remember that the view functions need to be on the
Python path.

Your Python Path

Your Python path is the list of directories on your system where Python looks when you use the
Python i nport statement.

For example, let’s say your Python path is set to

["", "/Tusr/libl/python2.4/site-packages', '/hone/usernane/djcode/"'] . If you execute the
Python code from foo inport bar, Python will first check for a module called f oo. py in the
current directory. (The first entry in the Python path, an empty string, means “the current
directory.”) If that file doesn’t exist, Python will look for the file
[usr/libl/python2.4/site-packages/foo. py. If that file doesn’t exist, it will try

/ horre/ user nane/ dj code/ f 0o. py. Finally, if that file doesn’t exist, it will raise | nport Error .

If you're interested in seeing the value of your Python path, start the Python interactive
interpreter and type i nport sys, followed by print sys. path.

Generally you don’t have to worry about setting your Python path—Python and Django will take
care of things for you automatically behind the scenes. (If you're curious, setting the Python path
is one of the things that the manage. py file does.)

When you executed dj ango- admi n. py startproject in the previous chapter, the script created a URLconf for
you automatically: the file url s. py. Let’s edit that file. By default, it looks something like this:

from dj ango. conf.urls.defaults inport *
url patterns = patterns('’',
Exanpl e:

(r'~mysitel/', include(' nysite.apps.foo.urls.foo')),

Uncoment this for adm n:
(r*~admn/', include('django.contrib.admn.urls")),

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

Chapter 3: The Basics of Dynamic Web Pages
)

Let’s step through this code one line at a time:

= The first line imports all objects from the dj ango. conf . url s. def aul t s module, including a function called
patterns.

= The second line calls the function patterns() and saves the result into a variable called url patterns.
The patterns() function gets passed only a single argument—the empty string. The rest of the lines are
commented out. (The string can be used to supply a common prefix for view functions, but we’ll skip this
advanced usage for now.)

The main thing to note here is the variable ur | patt er ns, which Django expects to find in your ROOT__URLCONF
module. This variable defines the mapping between URLs and the code that handles those URLs.

By default, everything in the URLconf is commented out—your Django application is a blank slate. (As a side
note, that’'s how Django knew to show you the “It worked!” page in the last chapter. If your URLconf is empty,
Django assumes you just started a new project and, hence, displays that message.)

Let’s edit this file to expose our current _dateti ne view:

from dj ango. conf.urls.defaults inmport *
fromnysite.views inport current_datetine

url patterns = patterns('’',
(r'~tinme/$', current_datetine),

We made two changes here. First, we imported the current _dateti nme view from its module

(mysi t e/ vi ews. py, which translates into nysi t e. vi ews in Python import syntax). Next, we added the line
(r'~ine/$, current_datetine), . This line is referred to as a URLpattern—it’s a Python tuple in which the
first element is a simple regular expression and the second element is the view function to use for that pattern.

In a nutshell, we just told Django that any request to the URL / ti ne/ should be handled by the
current datetinme view function.

A few things are worth pointing out:

= Note that, in this example, we passed the current _dateti ne view function as an object without calling
the function. This is a key feature of Python (and other dynamic languages): functions are first-class
objects, which means you can pass them around just like any other variables. Cool stuff, eh?

= Ther inr'~tinme/$ means that ' *tine/$ is a Python raw string. This allows regular expressions to be
written without overly verbose escaping.

= You should exclude the expected slash at the beginning of the ' *ti ne/$' expression in order to match
/time/ . Django automatically puts a slash before every expression. At first glance, this may seem odd,
but URLconfs can be included in other URLconfs, and leaving off the leading slash simplifies matters. This
is further covered in Chapter 8.

= The caret character (*) and dollar sign character ($) are important. The caret means “require that the
pattern matches the start of the string,” and the dollar sign means “require that the pattern matches the
end of the string.”

This concept is best explained by example. If we had instead used the pattern ' “ti ne/' (without a dollar
sign at the end), then any URL that starts with ti ne/ would match, such as /tine/foo and /ti me/ bar,
not just / ti nme/ . Similarly, if we had left off the initial caret character (' ti ne/ $'), Django would match
any URL that ends with ti ne/ , such as /f oo/ bar/time/ . Thus, we use both the caret and dollar sign to
ensure that only the URL /ti me/ matches. Nothing more, nothing less.

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

Chapter 3: The Basics of Dynamic Web Pages

You may be wondering what happens if someone requests / ti nme. This is handled as you’d hope (via a
redirect) as long as the APPEND_SLASH setting is Tr ue. (See Appendix E for some good bedtime reading on
this topic.)

To test our changes to the URLconf, start the Django development server, as you did in Chapter 2, by running
the command pyt hon nanage. py runserver. (If you left it running, that’s fine, too. The development server

automatically detects changes to your Python code and reloads as necessary, so you don’'t have to restart the
server between changes.) The server is running at the address http://127.0. 0. 1: 8000/ , so open up a Web

browser and go to http://127.0.0. 1: 8000/ ti me/ . You should see the output of your Django view.

Hooray! You’'ve made your first Django-powered Web page.

Regular Expressions

Regular expressions (or regexes) are a compact way of specifying patterns in text. While Django
URLconfs allow arbitrary regexes for powerful URL-matching capability, you’ll probably use only a
few regex patterns in practice. Here’s a small selection of common patterns:

Symbol Matches

. (dot) Any character

\d Any digit

[A- Z] Any character, A-Z (uppercase)

[a-z] Any character, a-z (lowercase)

[A- Za- 7] Any character, a-z (case insensitive)

+ One or more of the previous expression (e.g., \ d+ matches one or more digit)
[~ + All characters except forward slash

? Zero or more of the previous expression (e.g., \ d* matches zero or more digits)
{1, 3} Between one and three (inclusive) of the previous expression

For more on regular expressions, see http://www.djangoproject.com/r/python/re-module/.

How Django Processes a Request

We should point out several things about what just happened. Here’s the nitty-gritty of what goes on when you
run the Django development server and make requests to Web pages:

= The command pyt hon nanage. py runserver imports a file called setti ngs. py from the same directory.
This file contains all sorts of optional configuration for this particular Django instance, but one of the most
important settings is ROOT_URLCONF. The ROOT_URLCONF setting tells Django which Python module should
be used as the URLconf for this Web site.

Remember when dj ango- admi n. py startproject created the files settings. py and url s. py? Well, the
autogenerated set ti ngs. py has a ROOT_URLCONF that points to the autogenerated ur | s. py. Convenient.

= When a request comes in—say, a request to the URL / ti ne/ —Django loads the URLconf pointed to by the
ROOT_URLCONF setting. Then it checks each of the URLpatterns in that URLconf in order, comparing the
requested URL with the patterns one at a time, until it finds one that matches. When it finds one that
matches, it calls the view function associated with that pattern, passing an Ht t pRequest object as the
first parameter to the function. (More on Htt pRequest later.)

= The view function is responsible for returning an Ht t pResponse object.

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

http://www.djangoproject.com/r/python/re-module/

Chapter 3: The Basics of Dynamic Web Pages

You now know the basics of how to make Django-powered pages. It’s quite simple, really—just write view
functions and map them to URLs via URLconfs. You might think it would be slow to map URLs to functions
using a series of regular expressions, but you’d be surprised.

How Django Processes a Request: Complete Details

In addition to the straightforward URL-to-view mapping just described, Django provides quite a bit of flexibility
in processing requests.

The typical flow—URLconf resolution to a view function which returns an Htt pResponse—can be short-circuited
or augmented via middleware. The deep secrets of middleware will be fully covered in Chapter 15, but a quick
sketch (see Figure 3-1) should aid you in conceptually fitting the pieces together.

HTTP

ModPFythonHandler

HitpRequest

Response
Middleware

Response? 404/500
Response

= == == == == Qequest Exception Handler =

Response

Exception

Middleware

e Response?
Middleware

Exception

- = = == == = \fjew Exception Handler = == o= = o -

Figure 3-1: The complete flow of a Django request and response.

When an HTTP request comes in from the browser, a server-specific handler constructs the Ht t pRequest
passed to later components and handles the flow of the response processing.

The handler then calls any available Request or View middleware. These types of middleware are useful for
augmenting incoming Ht t pRequest objects as well as providing special handling for specific types of requests.
If either returns an Ht t pResponse, processing bypasses the view.

Bugs slip by even the best programmers, but exception middleware can help squash them. If a view function
raises an exception, control passes to the Exception middleware. If this middleware does not return an
Ht t pResponse, the exception is re-raised.

Even then, all is not lost. Django includes default views that create a friendly 404 and 500 response.

Finally, response middleware is good for post-processing an Ht t pResponse just before it's sent to the browser
or doing cleanup of request-specific resources.

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

Chapter 3: The Basics of Dynamic Web Pages

URLconfs and Loose Coupling

Now’s a good time to highlight a key philosophy behind URLconfs and behind Django in general: the principle
of loose coupling. Simply put, loose coupling is a software-development approach that values the importance
of making pieces interchangeable. If two pieces of code are loosely coupled, then changes made to one of the
pieces will have little or no effect on the other.

Django’s URLconfs are a good example of this principle in practice. In a Django Web application, the URL
definitions and the view functions they call are loosely coupled; that is, the decision of what the URL should be
for a given function, and the implementation of the function itself, reside in two separate places. This lets a
developer switch out one piece without affecting the other.

In contrast, other Web development platforms couple the URL to the program. In typical PHP
(http://www.php.net/) applications, for example, the URL of your application is designated by where you place
the code on your filesystem. In early versions of the CherryPy Python Web framework
(http://www.cherrypy.org/), the URL of your application corresponded to the name of the method in which
your code lived. This may seem like a convenient shortcut in the short term, but it can get unmanageable in
the long run.

For example, consider the view function we wrote earlier, which displays the current date and time. If we
wanted to change the URL for the application— say, move it from /ti ne/ to /currentti ne/ —we could make a
quick change to the URLconf, without having to worry about the underlying implementation of the function.
Similarly, if we wanted to change the view function—altering its logic somehow—we could do that without
affecting the URL to which the function is bound. Furthermore, if we wanted to expose the current-date
functionality at several URLs, we could easily take care of that by editing the URLconf, without having to touch
the view code.

That's loose coupling in action. We’'ll continue to point out examples of this important philosophy throughout
this book.

404 Errors

In our URLconf thus far, we've defined only a single URLpattern: the one that handles requests to the URL
/tine/ . What happens when a different URL is requested?

To find out, try running the Django development server and hitting a page such as

http://127.0.0. 1: 8000/ hel l o/ or http://127.0.0.1: 8000/ does- not - exi st/ , or even

http://127.0.0. 1: 8000/ (the site “root”). You should see a “Page not found” message (see Figure 3-2).
(Pretty, isn’t it? We Django people sure do like our pastel colors.) Django displays this message because you
requested a URL that’s not defined in your URLconf.

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

http://www.php.net/
http://www.cherrypy.org/

Chapter 3: The Basics of Dynamic Web Pages

806 Page not found at /

' E] @httj:n:,,’,,f12?.0.0.1:80[)[]-;r =(Q~ Google
I
Page not found (404

Request Method: GET
Request URL: http://127.0.0.1:8000/

Using the URLconf defined in my=ite.urls, Django tried these URL patterns, in this order:
1. *mow/$
The current URL, /, didn't match any of these.

You're seeing this error because you have pEsue = True in your Django settings file. Change that to False, and Django will display a
standard 404 page.

s
B ————

Figure 3-2. Django’s 404 page

The utility of this page goes beyond the basic 404 error message; it also tells you precisely which URLconf
Django used and every pattern in that URLconf. From that information, you should be able to tell why the
requested URL threw a 404.

Naturally, this is sensitive information intended only for you, the Web developer. If this were a production site
deployed live on the Internet, we wouldn’t want to expose that information to the public. For that reason, this
“Page not found” page is only displayed if your Django project is in debug mode. We’ll explain how to
deactivate debug mode later. For now, just know that every Django project is in debug mode when you first
create it, and if the project is not in debug mode, a different response is given.

Your Second View: Dynamic URLs

In our first view example, the contents of the page—the current date/time— were dynamic, but the URL
(/tinme/) was static. In most dynamic Web applications, though, a URL contains parameters that influence the
output of the page.

Let’s create a second view that displays the current date and time offset by a certain number of hours. The
goal is to craft a site in such a way that the page /ti ne/ pl us/ 1/ displays the date/time one hour into the
future, the page / ti me/ pl us/ 2/ displays the date/time two hours into the future, the page /ti ne/ pl us/ 3/
displays the date/time three hours into the future, and so on.

A novice might think to code a separate view function for each hour offset, which might result in a URLconf like
this:

url patterns = patterns('’',
(r'~tinme/$' , current_datetine),
(r'~tine/plus/1/$', one_hour_ahead),
(r*~tine/plus/2/$, two_hours_ahead),
(r'~tinme/plus/3/$, three hours_ahead),
(r*~tinme/plus/4//$' , four_hours_ahead),

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

Chapter 3: The Basics of Dynamic Web Pages

Clearly, this line of thought is flawed. Not only would this result in redundant view functions, but also the
application is fundamentally limited to supporting only the predefined hour ranges—one, two, three, or four
hours. If, all of a sudden, we wanted to create a page that displayed the time five hours into the future, we’'d
have to create a separate view and URLconf line for that, furthering the duplication and insanity. We need to
do some abstraction here.

A Word About Pretty URLs

If you're experienced in another Web development platform, such as PHP or Java, you may be thinking, “Hey,
let’'s use a query string parameter!”, something like / ti nme/ pl us ?hour s=3, in which the hours would be
designated by the hour s parameter in the URL’s query string (the part after the ?).

You can do that with Django (and we’ll tell you how later, if you really must know), but one of Django’s core
philosophies is that URLs should be beautiful. The URL / ti ne/ pl us/ 3/ is far cleaner, simpler, more readable,
easier to recite to somebody aloud and ... just plain prettier than its query string counterpart. Pretty URLs are a
sign of a quality Web application.

Django’s URLconf system encourages pretty URLs by making it easier to use pretty URLs than not to.

Wildcard URLpatterns

Continuing with our hour s_ahead example, let’s put a wildcard in the URLpattern. As we mentioned previously,
a URLpattern is a regular expression; hence, we can use the regular expression pattern \ d+ to match one or
more digits:

from dj ango. conf.urls.defaults inport *
fromnysite.views inport current_datetine, hours_ahead

url patterns = patterns('’',
(r'~tinme/$' , current_datetine),
(r'~time/plus/\d+/$' , hours_ahead),

This URLpattern will match any URL such as /tine/plus/2/,/tinelplus/25/, or even

/tinmel/plus/ 100000000000/ . Come to think of it, let’s limit it so that the maximum allowed offset is 99 hours.
That means we want to allow either one- or two-digit numbers—in regular expression syntax, that translates
into\d{1, 2}:

(r'~time/plus/\d{1,2}/$, hours_ahead),

Note

When building Web applications, it's always important to consider the most outlandish data input
possible, and decide whether or not the application should support that input. We've curtailed the
outlandishness here by limiting the offset to 99 hours. And, by the way, The Outlandishness
Curtailers would be a fantastic, if verbose, band name.

Now that we’ve designated a wildcard for the URL, we need a way of passing that data to the view function, so
that we can use a single view function for any arbitrary hour offset. We do this by placing parentheses around
the data in the URLpattern that we want to save. In the case of our example, we want to save whatever
number was entered in the URL, so let’s put parentheses around the \ d{ 1, 2} :

(r'~tinme/plus/(\d{1,2})/%$, hours_ahead),

If you’re familiar with regular expressions, you’ll be right at home here; we’re using parentheses to capture
data from the matched text.

The final URLconf, including our previous current _dat eti me view, looks like this:

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

Chapter 3: The Basics of Dynamic Web Pages

from dj ango. conf.urls.defaults inport *
fromnysite.views inport current_datetine, hours_ahead

url patterns = patterns('’',
(r'~tinme/$', current_datetine),
(r'~time/plus/(\d{1,2})/$", hours_ahead),

With that taken care of, let’'s write the hour s_ahead view.

Coding Order

In this example, we wrote the URLpattern first and the view second, but in the previous example,
we wrote the view first, then the URLpattern. Which technique is better? Well, every developer is
different.

If you’re a big-picture type of person, it may make the most sense to you to write all of the
URLpatterns for your application at the same time, at the start of your project, and then code up
the views. This has the advantage of giving you a clear to-do list, and it essentially defines the
parameter requirements for the view functions you’ll need to write.

If you’re more of a bottom-up developer, you might prefer to write the views first, and then
anchor them to URLs afterward. That's OK, too.

In the end, it comes down to which technique fits your brain the best. Both approaches are valid.

hour s_ahead is very similar to the current _dat eti me view we wrote earlier, with a key difference: it takes an
extra argument, the number of hours of offset. Add this to vi ews. py:

def hours_ahead(request, offset):

of fset = int(offset)
dt = datetine.datetinme.now) + datetine.tinedelta(hours=offset)
htm = "<htm ><body>In % hour(s), it will be %.</body></htm >" % (offset, dt)

return Htt pResponse(htm)

Let’s step through this code one line at a time:

= Just as we did for our current _dat eti me view, we import the class dj ango. http. H t pResponse and the
dat et i ne module.

= The view function, hour s_ahead, takes two parameters: r equest and of f set .

= request is an Htt pRequest object, just as in current _dat eti ne. We'll say it again: each view always
takes an Ht t pRequest object as its first parameter.

= of fset is the string captured by the parentheses in the URLpattern. For example, if the requested URL
were / time/ plus/ 3/, then of f set would be the string ' 3' . If the requested URL were
/tinmelplus/21/, then of f set would be the string ' 21' . Note that captured strings will always be
strings, not integers, even if the string is composed of only digits, such as ' 21" .

We decided to call the variable of f set , but you can call it whatever you’d like, as long as it’s a valid
Python identifier. The variable name doesn’t matter; all that matters is that it’'s the second argument to
the function (after r equest). It's also possible to use keyword, rather than positional, arguments in an
URLconf. We cover that in Chapter 8.

= The first thing we do within the function is call i nt () on of f set . This converts the string value to an
integer.

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

Chapter 3: The Basics of Dynamic Web Pages

Note that Python will raise a Val ueErr or exception if you call i nt () on a value that cannot be converted
to an integer, such as the string ' f o0’ . However, in this example we don’t have to worry about catching
that exception, because we can be certain of f set will be a string containing only digits. We know that
because the regular-expression pattern in our URLconf— (\ d{ 1, 2}) —captures only digits. This illustrates
another nicety of URLconfs: they provide a fair level of input validation.

= The next line of the function shows why we called i nt () on of f set . On this line, we calculate the current
time plus a time offset of of f set hours, storing the result in dt . The dat eti ne. ti nedel t a function
requires the hour s parameter to be an integer.

= Next, we construct the HTML output of this view function, just as we did in current _dateti ne. A small
difference in this line from the previous line is that it uses Python’s format-string capability with two
values, not just one. Hence, there are two % symbols in the string and a tuple of values to insert:
(offset, dt).

= Finally, we return an Ht t pResponse of the HTML—again, just as we did in current _dateti ne.

With that view function and URLconf written, start the Django development server (if it's not already running),
and visit http://127.0. 0. 1: 8000/ ti ne/ pl us/ 3/ to verify it works. Then try

http://127.0.0.1: 8000/ tine/plus/5/. Then http://127.0.0.1: 8000/ tine/ plus/ 24/ . Finally, visit
http://127.0.0.1: 8000/ tine/ plus/ 100/ to verify that the pattern in your URLconf only accepts one- or two-
digit numbers; Django should display a “Page not found” error in this case, just as we saw in the “404 Errors”
section earlier. The URL http://127.0.0.1: 8000/ ti me/ pl us/ (with no hour designation) should also throw a
404.

If you're following along while coding at the same time, you’ll notice that the vi ews. py file now contains two
views. (We omitted the current _dateti ne view from the last set of examples for clarity.) Put together,
vi ews. py should look like this:

from dj ango. http inport HttpResponse
i mport datetine

def current _datetine(request):
now = datetine.datetinme. now)
htm = "<htnm ><body>It is now %. </body></htm >" % now
return Htt pResponse(htm)

def hours_ahead(request, offset):

of fset = int(offset)
dt = datetinme.datetinme.now) + datetine.timedelta(hours=offset)
htm = "<htm ><body>In % hour(s), it will be %.</body></htm >" % (offset, dt)

return HttpResponse(htm)

Django’s Pretty Error Pages

Take a moment to admire the fine Web application we’ve made so far ... now let’s break it! We’ll deliberately
introduce a Python error into our vi ews. py file by commenting out the of fset = int(offset) line in the
hour s_ahead view:

def hours_ahead(request, offset):

#of fset = int(offset)
dt = datetine.datetinme.now) + datetine.tinedelta(hours=offset)
htm = "<htm ><body>In % hour(s), it will be %.</body></htm >" % (of fset, dt)

return Htt pResponse(htm)

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

Chapter 3: The Basics of Dynamic Web Pages

Load up the development server and navigate to / ti me/ pl us/ 3/ . You’ll see an error page with a significant
amount of information, including a TypeEr r or message displayed at the very top:
"unsupported type for tinmedelta hours conponent: str".

What happened? Well, the dateti ne. ti nedel t a function expects the hour s parameter to be an integer, and
we commented out the bit of code that converted of f set to an integer. That caused datetine.ti nmedel ta to
raise the TypeError. It's the typical kind of small bug that every programmer runs into at some point.

The point of this example was to demonstrate Django’s error pages. Take some time to explore the error page
and get to know the various bits of information it gives you.

Here are some things to notice:

= At the top of the page, you get the key information about the exception: the type of exception, any
parameters to the exception (the "unsupported type" message in this case), the file in which the
exception was raised, and the offending line number.

= Under the key exception information, the page displays the full Python traceback for this exception. This is
similar to the standard traceback you get in Python’s command-line interpreter, except it’s more
interactive. For each frame in the stack, Django displays the name of the file, the function/method name,
the line number, and the source code of that line.

Click the line of source code (in dark gray), and you’ll see several lines from before and after the
erroneous line, to give you context.

Click “Local vars” under any frame in the stack to view a table of all local variables and their values, in
that frame, at the exact point in the code at which the exception was raised. This debugging information
is invaluable.

= Note the “Switch to copy-and-paste view” text under the “Traceback” header. Click those words, and the
traceback will switch to a alternate version that can be easily copied and pasted. Use this when you want
to share your exception traceback with others to get technical support— such as the kind folks in the
Django IRC chat room or on the Django users mailing list.

= Next, the “Request information” section includes a wealth of information about the incoming Web request
that spawned the error: GET and POST information, cookie values, and meta information, such as CGI
headers. Appendix H has a complete reference of all the information a request object contains.

Below the “Request information” section, the “Settings” section lists all of the settings for this particular
Django installation. All the available settings are covered in detail in Appendix E. For now, take a look at
the settings to get an idea of the information available.

The Django error page is capable of displaying more information in certain special cases, such as the case of
template syntax errors. We'll get to those later, when we discuss the Django template system. For now,
uncomment the of fset = int(offset) line to get the view function working properly again.

Are you the type of programmer who likes to debug with the help of carefully placed pri nt statements? You
can use the Django error page to do so—just without the pri nt statements. At any point in your view,
temporarily insert an assert Fal se to trigger the error page. Then, you can view the local variables and state
of the program. (There’s a more advanced way to debug Django views, which we’ll explain later, but this is the
quickest and easiest.)

Finally, it's obvious that much of this information is sensitive—it exposes the innards of your Python code and
Django configuration—and it would be foolish to show this information on the public Internet. A malicious
person could use it to attempt to reverse-engineer your Web application and do nasty things. For that reason,
the Django error page is only displayed when your Django project is in debug mode. We’ll explain how to
deactivate debug mode later. For now, just know that every Django project is in debug mode automatically
when you start it. (Sound familiar? The “Page not found” errors, described in the “404 Errors” section, work the
same way.)

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

Chapter 3: The Basics of Dynamic Web Pages

What’s next?

We’'ve so far been producing views by hard-coding HTML into the Python code. Unfortunately, this is nearly
always a bad idea. Luckily, Django ships with a simple yet powerful template engine that allows you to
separate the design of the page from the underlying code. We’ll dive into Django’s template engine in the next
chapter.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter03/[2009.01.07. 10:38:56]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 4: The Django Template System

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 4: The Django Template System

In the previous chapter, you may have noticed something peculiar in how we returned the text in our example
views. Namely, the HTML was hard-coded directly in our Python code.

This arrangement leads to several problems:

= Any change to the design of the page requires a change to the Python code. The design of a site tends to
change far more frequently than the underlying Python code, so it would be convenient if the the design
could change without needing to modify the Python code.

= Writing Python code and designing HTML are two different disciplines, and most professional Web
development environments split these responsibilities between separate people (or even separate
departments). Designers and HTML/CSS coders shouldn’t have to edit Python code to get their job done;
they should deal with HTML.

= Similarly, it's most efficient if programmers can work on Python code and designers can work on
templates at the same time, rather than one person waiting for the other to finish editing a single file that
contains both Python and HTML.

For these reasons, it's much cleaner and more maintainable to separate the design of the page from the
Python code itself. We can do this with Django’s template system, which we discuss in this chapter.

Template System Basics

A Django template is a string of text that is intended to separate the presentation of a document from its data.
A template defines placeholders and various bits of basic logic (i.e., template tags) that regulate how the
document should be displayed. Usually, templates are used for producing HTML, but Django templates are
equally capable of generating any text-based format.

Let’s dive in with a simple example template. This template describes an HTML page that thanks a person for
placing an order with a company. Think of it as a form letter:

<ht m >
<head><titl e>Ordering notice</title></head>

<body>
<p>Dear {{ person_nane }}, </ p>

<p>Thanks for placing an order from {{ conpany }}. It's scheduled to
ship on {{ ship_date|ldate:"F j, Y" }}.</p>

<p>Here are the itens you' ve ordered: </ p>

{% for itemin itemlist %
{{ item}}

{% endf or %

</ ul >

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 4: The Django Template System

{%if ordered warranty %
<p>Your warranty information will be included in the packaging. </ p>
{%endif %

<p>Si ncerely,
{{ conpany }}</p>

</ body>
</htm >

This template is basic HTML with some variables and template tags thrown in. Let’s step through it:

= Any text surrounded by a pair of braces (e.g., {{ person_name }}) is a variable. This means “insert the
value of the variable with the given name.” How do we specify the values of the variables? We’ll get to
that in a moment.

= Any text that’s surrounded by curly braces and percent signs (e.g., {% if ordered_warranty %) is a

template tag. The definition of a tag is quite broad: a tag just tells the template system to “do
something.”

This example template contains two tags: the {% for itemin itemlist % tag (afor tag) and the
{%if ordered_warranty % tag (anif tag).

A for tag acts as a simple loop construct, letting you loop over each item in a sequence. An i f tag, as
you may expect, acts as a logical “if” statement. In this particular case, the tag checks whether the value
of the ordered_warranty variable evaluates to True. If it does, the template system will display
everything between the {% i f ordered_warranty % and {% endi f % . If not, the template system
won't display it. The template system also supports { % el se % and other various logic statements.

= Finally, the second paragraph of this template has an example of a filter, with which you can alter the
display of a variable. In this example, {{ ship_date|date:"F j, Y" }}, we’re passing the shi p_date
variable to the dat e filter, giving the dat e filter the argument "F j, Y". The dat e filter formats dates in a
given format, as specified by that argument. Filters are attached using a pipe character (|), as a
reference to Unix pipes.

Each Django template has access to several built-in tags and filters, many of which are discussed in the
sections that follow. Appendix F contains the full list of tags and filters, and it’s a good idea to familiarize
yourself with that list so you know what'’s possible. It’s also possible to create your own filters and tags, which
we cover in Chapter 10.

Using the Template System

To use the template system in Python code, just follow these two steps:

1. Create a Tenpl at e object by providing the raw template code as a string. Django also offers a way to
create Tenpl at e objects by designating the path to a template file on the filesystem; we’ll examine that in
a bit.

2. Call the render () method of the Tenpl at e object with a given set of variables (i.e., the context). This
returns a fully rendered template as a string, with all of the variables and block tags evaluated according
to the context.

The following sections describe each step in more detail.

Creating Template Objects

The easiest way to create a Tenpl at e object is to instantiate it directly. The Tenpl at e class lives in the
dj ango. t enpl at e module, and the constructor takes one argument, the raw template code. Let’s dip into the
Python interactive interpreter to see how this works in code.

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

Interactive Interpreter Examples

Throughout this book, we feature example Python interactive interpreter sessions. You can
recognize these examples by the triple greater-than signs (>>>), which designate the interpreter’s
prompt. If you’re copying examples from this book, don’t copy those greater-than signs.

Multiline statements in the interactive interpreter are padded with three dots (. . .), for example:

>>> print """This is a
string that spans
three lines."""

This is a

string that spans

three lines.

>>> def ny_function(val ue):

print val ue

>>> ny_function(' hello")

hel | o

Those three dots at the start of the additional lines are inserted by the Python shell—they’re not

part of our input. We include them here to be faithful to the actual output of the interpreter. If
you copy our examples to follow along, don’t copy those dots.

From within the project directory created by dj ango- adm n. py startproject (as covered in Chapter 2), type
pyt hon manage. py shel | to start the interactive interpreter. Here’s a basic walk-through:

>>> from dj ango.tenpl ate inport Tenpl ate

>>> t = Tenplate("My name is {{ nane }}.")

>>> print t

If you’'re following along interactively, you’ll see something like this:

<dj ango. tenpl ate. Tenpl ate obj ect at 0xb7d5f 24c>

That Oxb7d5f 24c will be different every time, and it doesn’t really matter; it's simply the Python “identity” of
the Tenpl at e object.

Django Settings

When using Django, you need to tell Django which settings to use. Interactively, this is typically
done using pyt hon nmanage. py shel | , but you've got a few other options described in Appendix E.

When you create a Tenpl at e object, the template system compiles the raw template code into an internal,
optimized form, ready for rendering. But if your template code includes any syntax errors, the call to
Tenpl at e() will cause a Tenpl at eSynt axEr r or exception:

>>> from dj ango.tenpl ate inport Tenpl ate
>>> t = Tenplate(' {% notatag % ')
Traceback (nobst recent call |ast):

File "<stdin>, line 1, in ?

dj ango. t enpl at e. Tenpl at eSyntaxError: Invalid block tag: 'notatag

The system raises a Tenpl at eSynt axErr or exception for any of the following cases:

= Invalid block tags

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

Invalid arguments to valid block tags
= Invalid filters
= Invalid arguments to valid filters
= Invalid template syntax

= Unclosed block tags (for block tags that require closing tags)

Rendering a Template

Once you have a Tenpl at e object, you can pass it data by giving it a context. A context is simply a set of
variables and their associated values. A template uses this to populate its variable tags and evaluate its block
tags.

A context is represented in Django by the Cont ext class, which lives in the dj ango. t enpl at e module. Its
constructor takes one optional argument: a dictionary mapping variable names to variable values. Call the
Tenpl at e object’s r ender () method with the context to “fill” the template:

>>> from dj ango. tenpl ate inport Context, Tenplate
>>> Tenplate("My nanme is {{ name }}.")

Cont ext ({"nanme": "Stephane"})

>>> t.render(c)

"My nane is Stephane.’

>>> C

Dictionaries and Contexts

3 A Python dictionary is a mapping between known keys and variable values. A Cont ext is similar
to a dictionary, but a Cont ext provides additional functionality, as covered in Chapter 10.

Variable names must begin with a letter (A-Z or a-z) and may contain digits, underscores, and dots. (Dots are
a special case we’ll get to in a moment.) Variable names are case sensitive.

Here’s an example of template compilation and rendering, using the sample template from the beginning of
this chapter:

>>> from dj ango. tenpl ate inport Tenpl ate, Context
>>> raw_tenplate = """<p>Dear {{ person_nane }}, </p>

<p>Thanks for ordering {{ product }} from {{ conpany }}. It's schedul ed
to ship on {{ ship_date|date:"F j, Y" }}.</p>

{%if ordered_warranty %
<p>Your warranty information will be included in the packaging. </ p>
{%endif %

... <p>Sincerely,
{{ conpany }}</p>"""
>>> t = Tenpl ate(raw_t enpl at e)
>>> jnport datetinme
>>> ¢ = Context({' person_nane': 'John Smith',
‘product’: ' Super Lawn Mower',
‘conpany': ' Qutdoor Equipnent',
"ship_date': datetine.date(2009, 4, 2),
.. ‘ordered_warranty': True})
>>> t.render(c)
"<p>Dear John Smith, </ p>\n\n<p>Thanks for ordering Super Lawn Mower from
Qut door Equipnment. It's scheduled \nto ship on April 2, 2009.</p>\n\n\n
<p>Your warranty information will be included in the packaging.</p>\n\n\n

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

<p>Si ncerel y,
Qut door Equi pnent </ p>"

Let’s step through this code one statement at a time:

First, we import the classes Tenpl at e and Cont ext , which both live in the module dj ango. tenpl ate.

We save the raw text of our template into the variable r aw_t enpl at e. Note that we use triple quote
marks to designate the string, because it wraps over multiple lines; in Python codde, strings designated
with single quote marks cannot be wrapped over multiple lines.

Next, we create a template object, t , by passing r aw_t enpl at e to the Tenpl at e class constructor.

We import the dat et i ne module from Python’s standard library, because we’ll need it in the following
statement.

= Then, we create a Cont ext object, c. The Cont ext constructor takes a Python dictionary, which maps
variable names to values. Here, for example, we specify that the per son_nane is ' John Snith', product
is ' Super Lawn Mower' , and so forth.

Finally, we call the render () method on our template object, passing it the context. This returns the
rendered template—that is, it replaces template variables with the actual values of the variables, and it
executes any block tags.

Note that the warranty paragraph was displayed because the or der ed_warr anty variable evaluated to
True. Also note the date, April 2, 2009, which is displayed according to the format string ' F j, Y'.
(We explain format strings for the dat e filter shortly.)

If you’re new to Python, you may wonder why this output includes newline characters (' \ n') rather than
displaying the line breaks. That’'s happening because of a subtlety in the Python interactive interpreter:
the call to t. render (c) returns a string, and by default the interactive interpreter displays the
representation of the string, rather than the printed value of the string. If you want to see the string with
line breaks displayed as true line breaks rather than '\ n' characters, use the pri nt statement:

print t.render(c).

Those are the fundamentals of using the Django template system: just write a template, create a Tenpl at e
object, create a Cont ext , and call the render () method.

Multiple Contexts, Same Template

Once you have a Tenpl at e object, you can render multiple contexts through it, for example:

>>> from dj ango.tenpl ate inport Tenpl ate, Context
>>> t = Tenplate('Hello, {{ nane }}")

>>> print t.render(Context({' nane': 'John'}))
Hel | o, John

>>> print t.render(Context({' nane': 'Julie'}))
Hello, Julie

>>> print t.render(Context({' nane': 'Pat'}))

Hel | o, Pat

Whenever you’re using the same template source to render multiple contexts like this, it’'s more efficient to
create the Tenpl at e object once, and then call r ender () on it multiple times:

Bad

for name in ('John', "Julie, 'Pat'):
t = Tenplate('Hello, {{ nane }}")
print t.render(Context({' nane': nane}))

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

Cood
t = Tenplate('Hello, {{ nane }}')
for name in ('John', 'Julie', 'Pat'):

print t.render(Context({' nane': nane}))

Django’s template parsing is quite fast. Behind the scenes, most of the parsing happens via a single call to a
short regular expression. This is in stark contrast to XML-based template engines, which incur the overhead of
an XML parser and tend to be orders of magnitude slower than Django’s template rendering engine.

Context Variable Lookup

In the examples so far, we’ve passed simple values in the contexts—mostly strings, plus a dateti ne. date
example. However, the template system elegantly handles more complex data structures, such as lists,
dictionaries, and custom objects.

The key to traversing complex data structures in Django templates is the dot character (.). Use a dot to
access dictionary keys, attributes, indices, or methods of an object.

This is best illustrated with a few examples. For instance, suppose you're passing a Python dictionary to a
template. To access the values of that dictionary by dictionary key, use a dot:

>>> from dj ango.tenpl ate inport Tenpl ate, Context

>>> person = {'nane': 'Sally', 'age': '43'}

>>> t = Tenplate('{{ person.nane }} is {{ person.age }} years old.")
>>> ¢ = Context({' person': person})

>>> t.render(c)

"Sally is 43 years old."'

Similarly, dots also allow access of object attributes. For example, a Python dat et i ne. dat e object has year,
nont h, and day attributes, and you can use a dot to access those attributes in a Django template:

>>> from dj ango.tenpl ate inport Tenplate, Context
>>> jnport datetine

>>> d = datetine.date(1993, 5, 2)

>>> d. year

1993

>>> d. nont h

5

>>> d. day

2

>>> t = Tenplate(' The nonth is {{ date.nonth }} and the year is {{ date.year }}.")
>>> ¢ = Context({'date': d})

>>> t.render(c)
"The nonth is 5 and the year is 1993.°

This example uses a custom class:

>>> from dj ango.tenpl ate inport Tenplate, Context
>>> cl| ass Person(object):
def __init__ (self, first_nanme, |ast_nane):
self.first_nane, self.last_nanme = first_nane, |ast_nane
Templ ate(' Hell o, {{ person.first_nane }} {{ person.last_nane }}.")
Cont ext ({' person': Person('John', 'Smith')})
>>> t.render(c)
‘"Hell o, John Smith.'

>>> t

>>> C

Dots are also used to call methods on objects. For example, each Python string has the methods upper () and

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

i sdigit(), and you can call those in Django templates using the same dot syntax:

>>> from dj ango.tenpl ate inport Tenpl ate, Context
>>> t = Tenplate('{{ var }} -- {{ var.upper }} -- {{ var.isdigit }}")

>>> t.render (Context({'var': 'hello'}))
"hello -- HELLO -- False
>>> t.render(Context({'var': '123'}))

'123 -- 123 -- True'

Note that you don’t include parentheses in the method calls. Also, it's not possible to pass arguments to the
methods; you can only call methods that have no required arguments. (We explain this philosophy later in this
chapter.)

Finally, dots are also used to access list indices, for example:

>>> from dj ango.tenpl ate inport Tenplate, Context

>>>t = Tenplate('ltem 2 is {{ itens.2 }}.")

>>> ¢ = Context({'itens': ['apples', 'bananas', 'carrots']})
>>> t.render(c)

‘"Item 2 is carrots.'

Negative list indices are not allowed. For example, the template variable {{ itens. -1 }} would cause a
Tenpl at eSynt axError.

Python Lists
3 Python lists have 0-based indices so that the first item is at index 0, the second is at index 1, and
SO on.

The dot lookups can be summarized like this: when the template system encounters a dot in a variable name,
it tries the following lookups, in this order:

Dictionary lookup (e.e., foo["bar"])

Attribute lookup (e.g., f 0o. bar)

Method call (e.g., foo. bar())

List-index lookup (e.g., foo[bar])

The system uses the first lookup type that works. It’s short-circuit logic.

Dot lookups can be nested multiple levels deep. For instance, the following example uses
{{ person. name. upper }}, which translates into a dictionary lookup (person[' nane']) and then a method

call (upper()):

>>> from dj ango. tenpl ate inport Tenpl ate, Context

>>> person = {'nane': "'Sally', 'age': '43'}

>>> t = Tenplate(' {{ person.nane.upper }} is {{ person.age }} years old.")
>>> ¢ = Context({' person': person})

>>> t.render(c)

"SALLY is 43 years old."'

Method Call Behavior

Method calls are slightly more complex than the other lookup types. Here are some things to keep in mind:

= If, during the method lookup, a method raises an exception, the exception will be propagated, unless the
exception has an attribute si |l ent _vari abl e_f ai | ure whose value is Tr ue. If the exception does have a
silent _variabl e_fail ure attribute, the variable will render as an empty string, for example:

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

>>> t = Tenplate("My nane is {{ person.first_name }}.")
>>> cl ass PersonC ass3:
def first_nanme(self):
- rai se AssertionError, "foo"
>>> p = PersonC ass3()
>>> t.render (Context({"person": p}))
Traceback (nost recent call last):

AssertionError: foo

>>> class SilentAssertionError(AssertionError):
. silent_variable failure = True
>>> cl ass PersonCl ass4:
def first_name(self):
rai se SilentAssertionError
>>> p = PersonC ass4()
>>> t.render (Context({"person": p}))
"My name is ."

= A method call will only work if the method has no required arguments. Otherwise, the system will move to

the next lookup type (list-index lookup).

= Obviously, some methods have side effects, and it would be foolish at best, and possibly even a security

hole, to allow the template system to access them.

Say, for instance, you have a BankAccount object that has a del et e() method. A template shouldn’t be

allowed to include something like {{ account.delete }}.

To prevent this, set the function attribute al t ers_dat a on the method:

def delete(self):
Del ete the account
delete.alters _data = True

The template system won't execute any method marked in this way. In other words, if a template includes

{{ account.delete }}, that tag will not execute the del et e() method. It will fail silently.

How Invalid Variables Are Handled

By default, if a variable doesn’t exist, the template system renders it as an empty string, failing silently, for

example:

>>> from dj ango.tenpl ate inport Tenpl ate, Context
>>> t = Tenplate(' Your nanme is {{ name }}.")

>>> t . render (Context())

"Your nane is .'

>>> t.render (Context({'var': "hello'}))

"Your nane is .'

>>> t.render(Context ({' NAME : 'hello'}))

"Your nane is .'

>>> t.render(Context ({' Nane': 'hello'}))

"Your nane is .'

The system fails silently rather than raising an exception because it’'s intended to be resilient to human error.
In this case, all of the lookups failed because variable names have the wrong case or name. In the real world,

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

it’s unacceptable for a Web site to become inaccessible due to a small template syntax error.

Note that it's possible to change Django’s default behavior in this regard, by tweaking a setting in your Django
configuration. We discuss this further in Chapter 10.

Playing with Context Objects

Most of the time, you’ll instantiate Cont ext objects by passing in a fully populated dictionary to Cont ext () . But
you can add and delete items from a Cont ext object once it's been instantiated, too, using standard Python
dictionary syntax:

>>> from dj ango. tenpl ate inport Context
>>> ¢ = Context({"foo": "bar"})

>>> c['foo']

' bar’

>>> del c['foo']

>>> c['foo']

>>> c['newariable'] = 'hello

>>> c[' newari abl e']

"hel |l o

Basic Template Tags and Filters

As we’ve mentioned already, the template system ships with built-in tags and filters. The sections that follow
provide a rundown of the most common tags and filters.

Tags

if/else

The {% i f % tag evaluates a variable, and if that variable is “true” (i.e., it exists, is not empty, and is not a
false Boolean value), the system will display everything between {% if % and {% endif % , for example:

{%if today_ is_weekend %
<p>Wel cone to the weekend! </ p>
{% endif %

An {% el se % tag is optional:

{%if today_ is_weekend %

<p>Wel cone to the weekend! </ p>
{% else %

<p>CGet back to work.</p>
{%endif %

Python “Truthiness”

In Python, the empty list ([]), tuple (()), dictionary ({}), string (' '), zero (0), and the special
object None are Fal se in a Boolean context. Everything else is True.

The {% i f % tag accepts and, or, or not for testing multiple variables, or to negate a given variable. For
example:

{%if athlete |list and coach_list %
Both athl etes and coaches are avail abl e.

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

{%endif %

{%if not athlete |ist %
There are no athl etes.
{% endif %

{%if athlete |list or coach |ist %
There are sone athletes or sone coaches.
{%endif %

{%if not athlete |ist or coach |ist %
There are no athletes or there are sone coaches. (OK, so
witing English translations of Bool ean |ogic sounds
stupid; it's not our fault.)

{%endif %

{%if athlete |ist and not coach_list %
There are sonme athletes and absolutely no coaches.
{% endif %

{%if 9% tags don’'t allow and and or clauses within the same tag, because the order of logic would be
ambiguous. For example, this is invalid:

{%if athlete |ist and coach_list or cheerleader |ist %

The use of parentheses for controlling order of operations is not supported. If you find yourself needing
parentheses, consider performing logic in the view code in order to simplify the templates. Even so, if you need
to combine and and or to do advanced logic, just use nested {% i f % tags, for example:

{%if athlete |list %
{%if coach |ist or cheerleader |ist %
We have athletes, and either coaches or cheerl eaders!
{% endi f %
{%endif %

Multiple uses of the same logical operator are fine, but you can’t combine different operators. For example, this
is valid:

{%if athlete |list or coach |list or parent list or teacher_ list %
Thereisno{%elif 9% tag. Use nested {% if 9% tags to accomplish the same thing:

{%if athlete_list %

<p>Here are the athletes: {{ athlete list }}.</p>
{% else %

<p>No athletes are avail abl e. </ p>

{%if coach |ist %

<p>Here are the coaches: {{ coach_list }}.</p>

{% endi f %

{%endif %

Make sure to close each {% i f % with an {% endi f % . Otherwise, Django will throw a
Tenpl at eSynt axError.

for

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

The {% for % tag allows you to loop over each item in a sequence. As in Python’s f or statement, the syntax
isfor X in Y, where Y is the sequence to loop over and X is the name of the variable to use for a particular

cycle of the loop. Each time through the loop, the template system will render everything between {% for %

and {% endfor 9% .

For example, you could use the following to display a list of athletes given a variable athl ete_| i st :

{%for athlete in athlete |list %
{{ athlete.name }}

{% endfor %

</ ul >

Add rever sed to the tag to loop over the list in reverse:
{%for athlete in athlete_list reversed %
{% endf or %

It's possible to nest {% for 9% tags:

{% for country in countries %
<hl1>{{ country.nane }}</hl>

{%for city in country.city list %
{{ city }}
{% endf or %
</ ul >
{% endfor %

There is no support for “breaking out” of a loop before the loop is finished. If you want to accomplish this,
change the variable you’re looping over so that it includes only the values you want to loop over. Similarly,
there is no support for a “continue” statement that would instruct the loop processor to return immediately to
the front of the loop. (See the section “Philosophies and Limitations” later in this chapter for the reasoning
behind this design decision.)

The {% for % tag sets a magic f or| oop template variable within the loop. This variable has a few attributes
that give you information about the progress of the loop:

= forloop. counter is always set to an integer representing the number of times the loop has been
entered. This is one-indexed, so the first time through the loop, f orl ocop. count er will be set to 1. Here’s
an example:

{%for itemin todo |ist %
<p>{{ forloop.counter }}: {{ item}}</p>
{% endf or %

= forloop.counterO is like f orl oop. count er , except it’'s zero-indexed. Its value will be set to 0 the first
time through the loop.

= forloop.revcounter is always set to an integer representing the number of remaining items in the loop.
The first time through the loop, f or| ocop. revcount er will be set to the total number of items in the
sequence you’re traversing. The last time through the loop, f or| oop. revcount er will be set to 1.

= forloop.revcounterO is like forl oop. revcount er, except it's zero-indexed. The first time through the
loop, forl oop. revcount er 0 will be set to the number of elements in the sequence minus 1. The last time
through the loop, it will be set to 0.

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

= forloop.first is a Boolean value set to Tr ue if this is the first time through the loop. This is convenient
for special casing:

{% for object in objects %
{%if forloop.first %Y<li class="first">{%else U%endif %
{{ object }}

{% endf or %

= forloop.last is a Boolean value set to Tr ue if this is the last time through the loop. A common use for
this is to put pipe characters between a list of links:

{%for link in links %B{{ link }}{%if not forloop.last %4 | {% endif % {% endfor
%

The above tenplate code might output sonething |ike this:
Linkl1 | Link2 | Link3 | Link4

= forloop. parentl oop is a reference to the f or| oop object for the parent loop, in case of nested loops.
Here’s an example:

{% for country in countries %
<t abl e>
{%for city in country.city_ list %
<tr>
<td>Country #{{ forloop.parentl oop.counter }}</td>
<td>City #{{ forloop.counter }}</td>
<td>{{ city }}</td>
</tr>
{% endfor %
</t abl e>
{% endfor %

The magic f or | oop variable is only available within loops. After the template parser has reached
{% endfor 9% , forl oop disappears.

Context and the forloop Variable

Inside the {% for 9% block, the existing variables are moved out of the way to avoid overwriting
the magic f or | oop variable. Django exposes this moved context in f or | oop. par ent | oop. You
generally don’t need to worry about this, but if you supply a template variable named f or | oop
(though we advise against it), it will be named f or | oop. par ent | oop while inside the {% for %
block.

ifequal/ifnotequal

The Django template system deliberately is not a full-fledged programming language and thus does not allow
you to execute arbitrary Python statements. (More on this idea in the section “Philosophies and Limitations.”)
However, it's quite a common template requirement to compare two values and display something if they’'re

equal—and Django provides an {% i f equal 9% tag for that purpose.

The {% i fequal % tag compares two values and displays everything between { % i f equal 9% and
{% endi f equal 9% if the values are equal.

This example compares the template variables user and currentuser :

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

{% i fequal user currentuser %
<h1>Wel cone! </ h1>
{% endi f equal %

The arguments can be hard-coded strings, with either single or double quotes, so the following is valid:

{% ifequal section 'sitenews' %
<h1>Site News</hl>
{% endi f equal %

{% ifequal section "conmmunity" %
<h1>Conmuni t y</ h1>
{% endi f equal %

Just like {% if %, the {%ifequal 9% tag supports an optional {% el se 9% :

{% ifequal section 'sitenews' %
<h1l>Site News</hl>

{% el se %
<h1>No News Here</hl>

{% endi f equal %

Only template variables, strings, integers, and decimal numbers are allowed as arguments to { % i f equal % .
These are valid examples:

{%ifequal variable 1 %

{% ifequal variable 1.23 %
{% ifequal variable 'foo" %
{%ifequal variable "foo" %

Any other types of variables, such as Python dictionaries, lists, or Booleans, can’t be hard-coded in
{% ifequal 9% . These are invalid examples:

{% ifequal variable True %
{%ifequal variable [1, 2, 3] %
{% ifequal variable {'key': 'value'} %

If you need to test whether something is true or false, use the {% i f % tags instead of {% i fequal % .

Comments

Just as in HTML or in a programming language such as Python, the Django template language allows for
comments. To designate a comment, use {# #}:

{# This is a conment #}

The comment will not be output when the template is rendered.

A comment cannot span multiple lines. This limitation improves template parsing performance. In the following
template, the rendered output will look exactly the same as the template (i.e., the comment tag will not be
parsed as a comment):

This is a {# this is not
a conment #}
test.

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

Filters

As explained earlier in this chapter, template filters are simple ways of altering the value of variables before
they’re displayed. Filters look like this:

{{ nanme|l ower }}

This displays the value of the {{ nane }} variable after being filtered through the | ower filter, which converts
text to lowercase. Use a pipe (|) to apply a filter.

Filters can be chained—that is, the output of one filter is applied to the next. Here’s a common idiom for
escaping text contents, and then converting line breaks to <p> tags:

{{ ny_text|escape|linebreaks }}
Some filters take arguments. A filter argument looks like this:
{{ bio|truncatewords:"30" }}

This displays the first 30 words of the bi o variable. Filter arguments are always in double quotes.
The following are a few of the most important filters; Appendix F covers the rest.

= addsl ashes: Adds a backslash before any backslash, single quote, or double quote. This is useful if the
produced text is included in a JavaScript string.

= date: Formats a dat e or dat eti ne object according to a format string given in the parameter, for
example:

{{ pub_date|date:"F j, Y" }}

Format strings are defined in Appendix F.

= escape: Escapes ampersands, quotes, and angle brackets in the given string. This is useful for sanitizing
user-submitted data and for ensuring data is valid XML or XHTML. Specifically, escape makes these

conversions:

= Converts & to &anp;

s Converts<to &t;

= Converts > to > ;

= Converts " (double quote) to " ;

= Converts ' (single quote) to '

= | engt h: Returns the length of the value. You can use this on a list or a string, or any Python object that
knows how to determine its length (i.e., any object that has a __ | en__() method).

Philosophies and Limitations

Now that you’'ve gotten a feel for the Django template language, we should point out some of its intentional
limitations, along with some philosophies behind why it works the way it works.

More than any other component of Web applications, programmer opinions on template systems vary wildly.
The fact that Python alone has dozens, if not hundreds, of open source template-language implementations
supports this point. Each was likely created because its developer deemed all existing template languages
inadequate. (In fact, it is said to be a rite of passage for a Python developer to write his or her own template
language! If you haven’t done this yet, consider it. It’'s a fun exercise.)

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

With that in mind, you might be interested to know that Django doesn’t require that you use its template
language. Because Django is intended to be a full-stack Web framework that provides all the pieces necessary
for Web developers to be productive, many times it’'s more convenient to use Django’s template system than
other Python template libraries, but it's not a strict requirement in any sense. As you’ll see in the upcoming
section “Using Templates in Views”, it’s very easy to use another template language with Django.

Still, it’s clear we have a strong preference for the way Django’s template language works. The template
system has roots in how Web development is done at World Online and the combined experience of Django’s
creators. Here are a few of those philosophies:

= Business logic should be separated from presentation logic. We see a template system as a tool that
controls presentation and presentation-related logic—and that’s it. The template system shouldn’t support
functionality that goes beyond this basic goal.

For that reason, it's impossible to call Python code directly within Django templates. All “programming” is
fundamentally limited to the scope of what template tags can do. It is possible to write custom template
tags that do arbitrary things, but the out-of-the-box Django template tags intentionally do not allow for
arbitrary Python code execution.

= Syntax should be decoupled from HTML/XML. Although Django’s template system is used primarily to
produce HTML, it's intended to be just as usable for non-HTML formats, such as plain text. Some other
template languages are XML based, placing all template logic within XML tags or attributes, but Django
deliberately avoids this limitation. Requiring valid XML to write templates introduces a world of human
mistakes and hard-to-understand error messages, and using an XML engine to parse templates incurs an
unacceptable level of overhead in template processing.

= Designers are assumed to be comfortable with HTML code. The template system isn’t designed so that
templates necessarily are displayed nicely in WYSIWYG editors such as Dreamweaver. That is too severe a
limitation and wouldn’t allow the syntax to be as nice as it is. Django expects template authors to be
comfortable editing HTML directly.

= Designers are assumed not to be Python programmers. The template system authors recognize that Web
page templates are most often written by designers, not programmers, and therefore should not assume
Python knowledge.

However, the system also intends to accommodate small teams in which the templates are created by
Python programmers. It offers a way to extend the system’s syntax by writing raw Python code. (More on
this in Chapter 10.)

= The goal is not to invent a programming language. The goal is to offer just enough programming-esque
functionality, such as branching and looping, that is essential for making presentation-related decisions.

As a result of these design philosophies, the Django template language has the following limitations:

= A template cannot set a variable or change the value of a variable. It's possible to write custom template
tags that accomplish these goals (see Chapter 10), but the stock Django template tags do not allow it.

= A template cannot call raw Python code. There’s no way to “drop into Python mode” or use raw Python
constructs. Again, it's possible to write custom template tags to do this, but the stock Django template
tags don’t allow it.

Using Templates in Views

You've learned the basics of using the template system; now let’s use this knowledge to create a view. Recall
the current _dat eti nme view in nysi te. vi ews, which we started in the previous chapter. Here’s what it looks

like:

from dj ango. http inport HttpResponse
i mport datetine

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

def current _datetine(request):
now = datetine.datetinme. now)
htm = "<htn ><body>It is now %. </body></htm >" % now
return Htt pResponse(htm)

Let’s change this view to use Django’s template system. At first, you might think to do something like this:

from dj ango. tenpl ate inport Tenpl ate, Context
from dj ango. http inmport HttpResponse
i nport datetine

def current _datetine(request):
now = datetine. datetinme. now)
t = Tenpl ate("<htm ><body>It is now {{ current _date }}.</body></htnl>")
htm = t.render(Context({'current_date': now}))
return HttpResponse(htm)

Sure, that uses the template system, but it doesn’t solve the problems we pointed out in the introduction of
this chapter. Namely, the template is still embedded in the Python code. Let’s fix that by putting the template
in a separate file, which this view will load.

You might first consider saving your template somewhere on your filesystem and using Python’s built-in file-
opening functionality to read the contents of the template. Here’s what that might look like, assuming the
template was saved as the file / hone/ dj angouser/t enpl ates/ nytenpl ate. htmi :

from dj ango. tenpl ate inport Tenpl ate, Context
from dj ango. http inmport HttpResponse
i mport datetine

def current _datetine(request):
now = datetine. datetinme. now)
Sinple way of using tenplates fromthe filesystem
This doesn't account for mssing files!
fp = open('/hone/djangouser/tenpl ates/ nytenplate. htm ")
t = Tenplate(fp.read())
fp.close()
htm = t.render(Context({' current_date': now}))
return Htt pResponse(htm)

This approach, however, is inelegant for these reasons:

= It doesn’t handle the case of a missing file. If the file myt enpl ate. ht M doesn’t exist or isn’t readable, the
open() call will raise an | OError exception.

= It hard-codes your template location. If you were to use this technique for every view function, you'd be
duplicating the template locations. Not to mention it involves a lot of typing!

= [t includes a lot of boring boilerplate code. You’ve got better things to do than to write calls to open() ,
fp.read(), and f p. cl ose() each time you load a template.

To solve these issues, we’ll use template loading and template directories, both of which are described in the
sections that follow.

Template Loading

Django provides a convenient and powerful API for loading templates from disk, with the goal of removing
redundancy both in your template-loading calls and in your templates themselves.

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

In order to use this template-loading API, first you’ll need to tell the framework where you store your
templates. The place to do this is in your settings file.

A Django settings file is the place to put configuration for your Django instance (aka your Django project). It's
a simple Python module with module-level variables, one for each setting.

When you ran dj ango- admi n. py startproject mysite in Chapter 2, the script created a default settings file
for you, aptly named setti ngs. py. Have a look at the file's contents. It contains variables that look like this
(though not necessarily in this order):

DEBUG = True

TI ME_ZONE = ' Aneri ca/ Chi cago'
USE | 18N = True

ROOT_URLCONF = 'nysite.urls'

This is pretty self-explanatory; the settings and their respective values are simple Python variables. And
because the settings file is just a plain Python module, you can do dynamic things such as checking the value
of one variable before setting another. (This also means that you should avoid Python syntax errors in your
settings file.)

We’ll cover settings files in depth in Appendix E, but for now, have a look at the TEMPLATE DI RS setting. This
setting tells Django’s template-loading mechanism where to look for templates. By default, it's an empty tuple.
Pick a directory where you’d like to store your templates and add it to TEMPLATE_DI RS, like so:

TEMPLATE DI RS = (
"/ hone/ dj ango/ mysi te/ t enpl at es’

There are a few things to note:

= You can specify any directory you want, as long as the directory and templates within that directory are
readable by the user account under which your Web server runs. If you can’t think of an appropriate place
to put your templates, we recommend creating a t enpl at es directory within your Django project (i.e.,
within the nysi t e directory you created in Chapter 2, if you’ve been following along with this book’s
examples).

= Don’t forget the comma at the end of the template directory string! Python requires commas within
single-element tuples to disambiguate the tuple from a parenthetical expression. This is a common
newbie gotcha.

If you want to avoid this error, you can make TEMPLATE_DI RS a list instead of a tuple, because single-
element lists don’t require a trailing comma:

TEMPLATE DI RS = |
"/ hone/ dj ango/ nysi t e/ t enpl at es’

A tuple is slightly more semantically correct than a list (tuples cannot be changed after being created, and
nothing should be changing settings once they’ve been read), so we recommend using a tuple for your
TEMPLATE_DI RS setting.

= |If you’re on Windows, include your drive letter and use Unix-style forward slashes rather than
backslashes, as follows:

TEMPLATE DIRS = (
' C/ww/ dj ango/ t enpl ates'

= It's simplest to use absolute paths (i.e., directory paths that start at the root of the filesystem). If you

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

want to be a bit more flexible and decoupled, though, you can take advantage of the fact that Django
settings files are just Python code by constructing the contents of TEMPLATE_DI RS dynamically, for

example:
i mport os.path

TEMPLATE DI RS = (
os.path.join(os.path.dirnane(__file_), 'tenplates').replace('\\',"'/"),

This example uses the “magic” Python variable _ fil e__, which is automatically set to the file name of
the Python module in which the code lives.

With TEMPLATE_DI RS set, the next step is to change the view code to use Django’s template-loading
functionality rather than hard-coding the template paths. Returning to our current _dat eti ne view, let’'s
change it like so:

from dj ango. tenpl at e. | oader inport get tenplate
from dj ango. tenpl ate i nport Cont ext

from dj ango. http inmport HttpResponse

i mport datetine

def current _datetine(request):
now = datetine. datetinme. now)
t = get_tenplate(' current _datetine.htm")
htm = t.render(Context({'current_date': now}))
return HttpResponse(htm)

In this example, we’re using the function dj ango. t enpl at e. | oader. get _tenpl at e() rather than loading the
template from the filesystem manually. The get _t enpl at e() function takes a template name as its argument,
figures out where the template lives on the filesystem, opens that file, and returns a compiled Tenpl at e
object.

If get _tenpl at e() cannot find the template with the given name, it raises a Tenpl at eDoesNot Exi st
exception. To see what that looks like, fire up the Django development server again, as in Chapter 3, by
running pyt hon nmanage. py runserver within your Django project’s directory. Then, point your browser at the
page that activates the current _dat eti ne view (e.g., http://127.0.0. 1: 8000/ ti ne/). Assuming your DEBUG
setting is set to Tr ue and you haven’t yet created a current _dateti nme. ht M template, you should see a
Django error page highlighting the Tenpl at eDoesNot Exi st error.

a686 TemplateDoesNotExist at /time/ ()

TemplateDoesNotExist at /time/ 0

current_datetime.html

Request Method: GET
Request URL: http:/flocalhost:B000/time/
Exception Type: TemplateDoesNotExist
Exception Value: current_datetime.html
Exception Location: /Users/jacob/Projects/Book/django/template/loader.py in find_template_source, line 72

Template-loader postmortem

Django tried loading these templates, in this order:
» Using loader django.template.loaders.filesystem. load_template_source:
« /Users/jacob/Projects/Book/ché/templates/current_datetime.html (File does not exist)
« Using loader django.template. loaders . app_directories. load_template_source:
o /Users/jacob/Projects/Book/django/contrib/admin/templates/current_datetime.html (File does not exist)
« fUsers/jacob/Projects/Book/che/templates/current_datetime. html (File does not exist) _
v

Caone LT

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

Figure 4-1: The error page shown when a template cannot be found.

This error page is similar to the one we explained in Chapter 3, with one additional piece of debugging
information: a “Template-loader postmortem” section. This section tells you which templates Django tried to
load, along with the reason each attempt failed (e.g., “File does not exist”). This information is invaluable when
you’re trying to debug template-loading errors.

As you can probably tell from the error messages found in the Figure 4-1, Django attempted to find the
template by combining the directory in the TEMPLATE_DI RS setting with the template name passed to

get _tenpl ate() . So if your TEMPLATE_DI RS contains ' / hone/ dj ango/ t enpl at es' , Django looks for the file
'/ hone/ dj ango/ t enpl at es/ current _datetine. htm ' . If TEMPLATE_DI RS contains more than one directory,
each is checked until the template is found or they’ve all been checked.

Moving along, create the current _datetine. ht mi file within your template directory using the following
template code:

<ht ml ><body>It is now {{ current _date }}.</body></htm >

Refresh the page in your Web browser, and you should see the fully rendered page.

render_to_response()

Because it's such a common idiom to load a template, fill a Cont ext , and return an Htt pResponse object with
the result of the rendered template, Django provides a shortcut that lets you do those things in one line of
code. This shortcut is a function called r ender _t o_r esponse() , which lives in the module dj ango. shortcuts.

Most of the time, you’ll be using render _to_response() rather than loading templates and creating Cont ext
and Ht t pResponse objects manually.

Here’s the ongoing current _dat eti ne example rewritten to use r ender _t o_response() :

from dj ango. shortcuts inport render_to_response
i mport datetine

def current _datetine(request):
now = datetine. datetinme. now)
return render_to_response('current_datetinme.htm ', {'current_date': now})

What a difference! Let’s step through the code changes:

= We no longer have to import get _t enpl ate, Tenpl at e, Cont ext , or Ht t pResponse. Instead, we import
dj ango. shortcuts.render_to_response. The i nport datetime remains.

= Within the current _dat eti nme function, we still calculate now, but the template loading, context creation,
template rendering, and Ht t pResponse creation is all taken care of by the render _t o_response() call.

Because render _to_response() returns an Htt pResponse object, we can simply r et ur n that value in the
view.

The first argument to render _t o_response() should be the name of the template to use. The second
argument, if given, should be a dictionary to use in creating a Cont ext for that template. If you don’t provide a
second argument, render _t o_response() will use an empty dictionary.

The locals() Trick

Consider our latest incarnation of current datetine:

def current _datetine(request):
now = datetine.datetinme. now)
return render_to_response('current_datetime. html', {'current_date': now})

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

Many times, as in this example, you'll find yourself calculating some values, storing them in variables (e.g.,
now in the preceding code), and sending those variables to the template. Particularly lazy programmers should
note that it’'s slightly redundant to have to give names for temporary variables and give names for the
template variables. Not only is it redundant, but also it's extra typing.

So if you're one of those lazy programmers and you like keeping code particularly concise, you can take
advantage of a built-in Python function called | ocal s() . It returns a dictionary mapping all local variable
names to their values. Thus, the preceding view could be rewritten like so:

def current _datetinme(request):
current _date = datetine.datetine. now()
return render _to_response('current_datetime.htm', |ocals())

Here, instead of manually specifying the context dictionary as before, we pass the value of | ocal s() , which
will include all variables defined at that point in the function’s execution. As a consequence, we’ve renamed the
now variable to current _dat e, because that’s the variable name that the template expects. In this example,

| ocal s() doesn’t offer a huge improvement, but this technique can save you some typing if you have several
template variables to define—or if you're lazy.

One thing to watch out for when using | ocal s() is that it includes every local variable, which may comprise
more variables than you actually want your template to have access to. In the previous example, | ocal s()
will also include r equest . Whether this matters to you depends on your application.

A final thing to consider is that | ocal s() incurs a small bit of overhead, because when you call it, Python has

to create the dictionary dynamically. If you specify the context dictionary manually, you avoid this overhead.

Subdirectories in get_template()

It can get unwieldy to store all of your templates in a single directory. You might like to store templates in
subdirectories of your template directory, and that’s fine. In fact, we recommend doing so; some more
advanced Django features (such as the generic views system, which we cover in Chapter 9) expect this
template layout as a default convention.

Storing templates in subdirectories of your template directory is easy. In your calls to get _tenpl ate(), just
include the subdirectory name and a slash before the template name, like so:

t = get_tenplate(' dateapp/current _datetine.htm ')

Because render _t o_response() is a small wrapper around get _t enpl at e(), you can do the same thing with
the first argument to render _t o_r esponse() .

There’s no limit to the depth of your subdirectory tree. Feel free to use as many as you like.

Note

Windows users, be sure to use forward slashes rather than backslashes. get _t enpl at e() assumes
a Unix-style file name designation.

The include Template Tag

Now that we’ve covered the template-loading mechanism, we can introduce a built-in template tag that takes
advantage of it: {% i ncl ude % . This tag allows you to include the contents of another template. The
argument to the tag should be the name of the template to include, and the template name can be either a
variable or a hard-coded (quoted) string, in either single or double quotes. Anytime you have the same code in
multiple templates, consider using an { % i ncl ude % to remove the duplication.

These two examples include the contents of the template nav. ht nl . The examples are equivalent and illustrate
that either single or double quotes are allowed:

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

{% include '"nav.htm"' %
{% include "nav.htm" %

This example includes the contents of the template i ncl udes/ nav. htni :

{% i nclude "includes/nav.htm"' %

This example includes the contents of the template whose name is contained in the variable t enpl at e_nane:
{% i nclude tenplate nanme %

As in get _tenpl at e(), the file name of the template is determined by adding the template directory from
TEMPLATE_DI RS to the requested template name.

Included templates are evaluated with the context of the template that’s including them.
If a template with the given name isn’t found, Django will do one of two things:

= If DEBUG is set to True, you'll see the Tenpl at eDoesNot Exi st exception on a Django error page.

= If DEBUG is set to Fal se, the tag will fail silently, displaying nothing in the place of the tag.

Template Inheritance

Our template examples so far have been tiny HTML snippets, but in the real world, you’ll be using Django’s
template system to create entire HTML pages. This leads to a common Web development problem: across a
Web site, how does one reduce the duplication and redundancy of common page areas, such as sitewide
navigation?

A classic way of solving this problem is to use server-side includes, directives you can embed within your HTML
pages to “include” one Web page inside another. Indeed, Django supports that approach, with the

{% include % template tag just described. But the preferred way of solving this problem with Django is to
use a more elegant strategy called template inheritance.

In essence, template inheritance lets you build a base “skeleton” template that contains all the common parts
of your site and defines “blocks” that child templates can override.

Let’'s see an example of this by creating a more complete template for our current _dat eti ne view, by editing
the current _datetine. htm file:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.01//EN'>
<htm | ang="en">
<head>
<title>The current tinme</title>
</ head>
<body>
<hl>My hel pful tinmestanp site</hl>
<p>It is now {{ current_date }}.</p>

<hr >

<p>Thanks for visiting nmy site.</p>
</ body>
</htm >

That looks just fine, but what happens when we want to create a template for another view—say, the
hour s_ahead view from Chapter 3? If we want again to make a nice, valid, full HTML template, we’d create
something like:

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.01//EN'>
<htm | ang="en">
<head>
<title>Future tinme</title>
</ head>
<body>
<hl>My hel pful timestanp site</hl>
<p>In {{ hour_offset }} hour(s), it will be {{ next_time }}.</p>

<hr >

<p>Thanks for visiting ny site.</p>
</ body>
</htm >

Clearly, we’ve just duplicated a lot of HTML. Imagine if we had a more typical site, including a navigation bar, a
few style sheets, perhaps some JavaScript—we’d end up putting all sorts of redundant HTML into each
template.

The server-side include solution to this problem is to factor out the common bits in both templates and save
them in separate template snippets, which are then included in each template. Perhaps you’d store the top bit
of the template in a file called header. ht m :

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.01//EN'>
<htm |ang="en">
<head>

And perhaps you’'d store the bottom bit in a file called f ooter. htm :

<hr >

<p>Thanks for visiting nmy site.</p>
</ body>
</htm >

With an include-based strategy, headers and footers are easy. It's the middle ground that’s messy. In this
example, both pages feature a title— <h1>My hel pful tinmestanp site</hl>—but that title can’t fit into
header. ht M because the <titl e> on both pages is different. If we included the <h1> in the header, we’'d have
to include the <titl e>, which wouldn’t allow us to customize it per page. See where this is going?

Django’s template inheritance system solves these problems. You can think of it as an “inside-out” version of
server-side includes. Instead of defining the snippets that are common, you define the snippets that are
different.

The first step is to define a base template—a skeleton of your page that child templates will later fill in. Here’s
a base template for our ongoing example:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.01//EN'>
<htm | ang="en">
<head>

<title>{%block title %{% endbl ock %</title>
</ head>
<body>

<h1>My hel pful tinestanp site</hl>

{% bl ock content % {% endbl ock %

{% bl ock footer %

<hr >

<p>Thanks for visiting ny site.</p>

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

{% endbl ock %
</ body>
</htm >

This template, which we’ll call base. ht nl , defines a simple HTML skeleton document that we’ll use for all the
pages on the site. It's the job of child templates to override, or add to, or leave alone the contents of the
blocks. (If you're following along at home, save this file to your template directory.)

We’'re using a template tag here that you haven’t seen before: the {% bl ock % tag. All the {% bl ock % tags
do is tell the template engine that a child template may override those portions of the template.

Now that we have this base template, we can modify our existing current _dat eti ne. ht ni template to use it:
{% extends "base.htm " %
{% block title % The current tinme{% endbl ock %

{% bl ock content %
<p>lIt is now {{ current _date }}.</p>
{% endbl ock %

While we’re at it, let’s create a template for the hour s_ahead view from Chapter 3. (If you're following along
with code, we’ll leave it up to you to change hours_ahead to use the template system.) Here’s what that would
look like:

{% extends "base.htm " %
{% block title % Future time{% endbl ock %

{% bl ock content %
<p>In {{ hour_offset }} hour(s), it will be {{ next_tinme }}.</p>
{% endbl ock %

Isn’t this beautiful? Each template contains only the code that’s unique to that template. No redundancy
needed. If you need to make a site-wide design change, just make the change to base. ht nl , and all of the
other templates will immediately reflect the change.

Here’s how it works. When you load the template current _dateti ne. ht il , the template engine sees the
{% extends % tag, noting that this template is a child template. The engine immediately loads the parent
template—in this case, base. htni .

At that point, the template engine notices the three { % bl ock % tags in base. ht M and replaces those blocks
with the contents of the child template. So, the title we've defined in { % bl ock title 9% will be used, as will
the {% bl ock content 9% .

Note that since the child template doesn’t define the f oot er block, the template system uses the value from
the parent template instead. Content within a { % bl ock % tag in a parent template is always used as a
fallback.

Inheritance doesn’t affect the way the context works, and you can use as many levels of inheritance as needed.
One common way of using inheritance is the following three-level approach:

1. Create a base. ht nl template that holds the main look and feel of your site. This is the stuff that rarely, if
ever, changes.

2. Create a base_SECTI ON. ht ml template for each “section” of your site (e.g., base_phot os. ht M and
base_forum htm). These templates extend base. ht ni and include section-specific styles/design.

3. Create individual templates for each type of page, such as a forum page or a photo gallery. These

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

Chapter 4: The Django Template System

templates extend the appropriate section template.

This approach maximizes code reuse and makes it easy to add items to shared areas, such as section-wide
navigation.

Here are some tips for working with template inheritance:

= If you use {% extends % in a template, it must be the first template tag in that template. Otherwise,
template inheritance won’t work.

= Generally, the more {% bl ock % tags in your base templates, the better. Remember, child templates
don’t have to define all parent blocks, so you can fill in reasonable defaults in a number of blocks, and
then define only the ones you need in the child templates. It's better to have more hooks than fewer
hooks.

= If you find yourself duplicating code in a number of templates, it probably means you should move that
code to a { % bl ock % in a parent template.

= If you need to get the content of the block from the parent template, the {{ bl ock. super }} variable will
do the trick. This is useful if you want to add to the contents of a parent block instead of completely
overriding it.

= You may not define multiple { % bl ock 9% tags with the same name in the same template. This limitation
exists because a block tag works in “both” directions. That is, a block tag doesn’t just provide a hole to
fill, it also defines the content that fills the hole in the parent. If there were two similarly named
{% bl ock 9% tags in a template, that template’s parent wouldn’t know which one of the blocks’ content to
use.

= The template name you pass to { % ext ends % is loaded using the same method that get _t enpl at e()
uses. That is, the template name is appended to your TEMPLATE_DI RS setting.

= In most cases, the argument to { % ext ends % will be a string, but it can also be a variable, if you don’t
know the name of the parent template until runtime. This lets you do some cool, dynamic stuff.

What’s next?

Most modern Web sites are database-driven: the content of the Web site is stored in a relational database.
This allows a clean separate of data and logic (in the same way views and templates allow the separation of
logic and display.)

The next chapter covers the tools Django gives you to interact with a database.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter04/[2009.01.07. 10:39:13]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 5: Interacting with a Database: Models

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 5: Interacting with a Database: Models

In Chapter 3, we covered the fundamentals of building dynamic Web sites with Django: setting up views and
URLconfs. As we explained, a view is responsible for doing some arbitrary logic, and then returning a response.
In the example, our arbitrary logic was to calculate the current date and time.

In modern Web applications, the arbitrary logic often involves interacting with a database. Behind the scenes,
a database-driven Web site connects to a database server, retrieves some data out of it, and displays that
data, nicely formatted, on a Web page. Or, similarly, the site could provide functionality that lets site visitors
populate the database on their own.

Many complex Web sites provide some combination of the two. Amazon.com, for instance, is a great example
of a database-driven site. Each product page is essentially a query into Amazon’s product database formatted
as HTML, and when you post a customer review, it gets inserted into the database of reviews.

Django is well suited for making database-driven Web sites, as it comes with easy yet powerful ways of
performing database queries using Python. This chapter explains that functionality: Django’s database layer.

(Note: While it’s not strictly necessary to know basic database theory and SQL in order to use Django’s
database layer, it's highly recommended. An introduction to those concepts is beyond the scope of this book,
but keep reading even if you're a database newbie. You’'ll probably be able to follow along and grasp concepts
based on the context.)

The “Dumb” Way to Do Database Queries in Views

Just as Chapter 3 detailed a “dumb” way to produce output within a view (by hard-coding the text directly
within the view), there’s a “dumb” way to retrieve data from a database in a view. It's simple: just use any
existing Python library to execute an SQL query and do something with the results.

In this example view, we use the MySQLdb library (available at http://www.djangoproject.com/r/python-mysql/)
to connect to a MySQL database, retrieve some records, and feed them to a template for display as a Web

page:

from dj ango. shortcuts inport render_to_response
i mport MySQLdb

def book |ist(request):
db = MySQ.db. connect (user="ne', db='nydb', passwd='secret', host='1local host")
cursor = db. cursor()
cursor. execute(' SELECT nane FROM books ORDER BY nane')
names = [rowf 0] for row in cursor.fetchall ()]
db. cl ose()
return render _to_response(' book list.htm', {'nanes’': nanes})

This approach works, but some problems should jump out at you immediately:

= We're hard-coding the database connection parameters. ldeally, these parameters would be stored in the
Django configuration.

= We're having to write a fair bit of boilerplate code: creating a connection, creating a cursor, executing a
statement, and closing the connection. Ideally, all we’d have to do is specify which results we wanted.

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257
http://www.djangoproject.com/r/python-mysql/

Chapter 5: Interacting with a Database: Models

= It ties us to MySQL. If, down the road, we switch from MySQL to PostgreSQL, we’ll have to use a different
database adapter (e.g., psycopg rather than MySQLdb), alter the connection parameters, and — depending
on the nature of the SQL statement — possibly rewrite the SQL. Ideally, the database server we're using
would be abstracted, so that a database server change could be made in a single place.

As you might expect, Django’s database layer aims to solve these problems. Here’s a sneak preview of how the
previous view can be rewritten using Django’s database API:

from dj ango. shortcuts inport render_to_response
from nysite. books. nodel s inport Book

def book |ist(request):
books = Book. obj ects. order_by(' nane')
return render _to_response(' book list.htm', {'books': books})

We'll explain this code a little later in the chapter. For now, just get a feel for how it looks.

The MTV Development Pattern

Before we delve into any more code, let's take a moment to consider the overall design of a database-driven
Django Web application.

As we mentioned in previous chapters, Django is designed to encourage loose coupling and strict separation
between pieces of an application. If you follow this philosophy, it’'s easy to make changes to one particular
piece of the application without affecting the other pieces. In view functions, for instance, we discussed the
importance of separating the business logic from the presentation logic by using a template system. With the
database layer, we’re applying that same philosophy to data access logic.

Those three pieces together — data access logic, business logic, and presentation logic — comprise a concept
that’'s sometimes called the Model-View-Controller (MVC) pattern of software architecture. In this pattern,
“Model” refers to the data access layer, “View” refers to the part of the system that selects what to display
and how to display it, and “Controller” refers to the part of the system that decides which view to use,
depending on user input, accessing the model as needed.

Why the Acronym?

The goal of explicitly defining patterns such as MVC is mostly to streamline communication among
developers. Instead of having to tell your coworkers, “Let’s make an abstraction of the data
access, then let's have a separate layer that handles data display, and let’'s put a layer in the
middle that regulates this,” you can take advantage of a shared vocabulary and say, “Let’s use the
MVC pattern here.”

Django follows this MVC pattern closely enough that it can be called an MVC framework. Here’s roughly how
the M, V, and C break down in Django:

= M, the data-access portion, is handled by Django’s database layer, which is described in this chapter.
= V, the portion that selects which data to display and how to display it, is handled by views and templates.

= C, the portion that delegates to a view depending on user input, is handled by the framework itself by
following your URLconf and calling the appropriate Python function for the given URL.

Because the “C” is handled by the framework itself and most of the excitement in Django happens in models,
templates, and views, Django has been referred to as an MTV framework. In the MTV development pattern,

= M stands for “Model,” the data access layer. This layer contains anything and everything about the data:
how to access it, how to validate it, which behaviors it has, and the relationships between the data.

= T stands for “Template,” the presentation layer. This layer contains presentation-related decisions: how
something should be displayed on a Web page or other type of document.

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

V stands for “View,” the business logic layer. This layer contains the logic that access the model and
defers to the appropriate template(s). You can think of it as the bridge between models and templates.

If you’re familiar with other MVC Web-development frameworks, such as Ruby on Rails, you may consider
Django views to be the “controllers” and Django templates to be the “views.” This is an unfortunate confusion
brought about by differing interpretations of MVC. In Django’s interpretation of MVC, the “view” describes the
data that gets presented to the user; it's not necessarily just how the data looks, but which data is presented.
In contrast, Ruby on Rails and similar frameworks suggest that the controller’s job includes deciding which data
gets presented to the user, whereas the view is strictly how the data looks, not which data is presented.

Neither interpretation is more “correct” than the other. The important thing is to understand the underlying
concepts.

Configuring the Database

With all of that philosophy in mind, let’s start exploring Django’s database layer. First, we need to take care of
some initial configuration: we need to tell Django which database server to use and how to connect to it.

We’ll assume you’ve set up a database server, activated it, and created a database within it (e.g., using a
CREATE DATABASE statement). SQLite is a special case; in that case, there’'s no database to create, because
SQLite uses standalone files on the filesystem to store its data.

As with TEMPLATE_DI RS in the previous chapter, database configuration lives in the Django settings file, called
settings. py by default. Edit that file and look for the database settings:

DATABASE_ENG NE = "'
DATABASE_NAME = ''
DATABASE_USER = "'
DATABASE_PASSWORD = ‘"'
DATABASE_HOST = '
DATABASE_PORT = "'

Here’s a rundown of each setting.

= DATABASE ENG NE tells Django which database engine to use. If you're using a database with Django,
DATABASE_ENG NE must be set to one of the strings shown in Table 5-1.

Table 5-1. Database Engine Settings

Setting Database Required Adapter

post gresql PostgreSQL psycopg version 1.X,
http://www.djangoproject.com/r/python-pgsql/1/.

post gresql _psycopg2 PostgreSQL psycopg version 2.X,
http://www.djangoproject.com/r/python-pgsql/.

nysql MySQL MySQ.db, http://www.djangoproject.com/r/python-
mysql/.

sqglite3 SQLite No adapter needed if using Python 2.5+. Otherwise,
pysdl i te, http://www.djangoproject.com/r/python-
sqlite/.

ado_nssql Microsoft SQL Server adodbapi version 2.0.1+,

http://www.djangoproject.com/r/python-ado/.

oracl e Oracle cx_Oracl e, http://www.djangoproject.com/r/python-
oracle/.

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

http://www.djangoproject.com/r/python-pgsql/1/
http://www.djangoproject.com/r/python-pgsql/
http://www.djangoproject.com/r/python-mysql/
http://www.djangoproject.com/r/python-mysql/
http://www.djangoproject.com/r/python-sqlite/
http://www.djangoproject.com/r/python-sqlite/
http://www.djangoproject.com/r/python-ado/
http://www.djangoproject.com/r/python-oracle/
http://www.djangoproject.com/r/python-oracle/

Chapter 5: Interacting with a Database: Models

Note that for whichever database back-end you use, you’ll need to download and install the appropriate
database adapter. Each one is available for free on the Web; just follow the links in the “Required
Adapter” column in Table 5-1.

= DATABASE_NAME tells Django the name of your database. If you're using SQLite, specify the full filesystem
path to the database file on your filesystem (e.g., ' / hone/ dj ango/ nmydat a. db').

= DATABASE USER tells Django which username to use when connecting to your database. If you're using
SQLite, leave this blank.

= DATABASE PASSWORD tells Django which password to use when connecting to your database. If you're
using SQLite or have an empty password, leave this blank.

= DATABASE_HOST tells Django which host to use when connecting to your database. If your database is on
the same computer as your Django installation (i.e., localhost), leave this blank. If you're using SQLite,
leave this blank.

MySQL is a special case here. If this value starts with a forward slash (' /') and you’re using MySQL,
MySQL will connect via a Unix socket to the specified socket, for example:

DATABASE_HOST = '/var/run/ nysql"'

If you're using MySQL and this value doesn’t start with a forward slash, then this value is assumed to be
the host.

= DATABASE_PORT tells Django which port to use when connecting to your database. If you're using SQLite,
leave this blank. Otherwise, if you leave this blank, the underlying database adapter will use whichever
port is default for your given database server. In most cases, the default port is fine, so you can leave this
blank.

Once you've entered those settings, test your configuration. First, from within the nysi t e project directory you
created in Chapter 2, run the command pyt hon nmanage. py shel | .

You’'ll notice this starts a Python interactive interpreter. Looks can be deceiving, though! There’s an important
difference between running the command pyt hon manage. py shel | within your Django project directory and
the more generic pyt hon. The latter is the basic Python shell, but the former tells Django which settings file to
use before it starts the shell. This is a key requirement for doing database queries: Django needs to know
which settings file to use in order to get your database connection information.

Behind the scenes, pyt hon manage. py shell simply assumes that your settings file is in the same directory as
manage. py. There are other ways to tell Django which settings module to use, but these subtleties will be
covered later. For now, use pyt hon nanage. py shel | whenever you need to drop into the Python interpreter
to do Django-specific tinkering.

Once you’'ve entered the shell, type these commands to test your database configuration:

>>> from dj ango. db inport connection
>>> cursor = connection.cursor ()

If nothing happens, then your database is configured properly. Otherwise, check the error message for clues
about what’s wrong. Table 5-2 shows some common errors.

Table 5-2. Database Configuration Error Messages

Error Message Solution

You haven’t set the DATABASE_ENGINE setting yet. Set the DATABASE_ENG NE setting to something
other than an empty string.

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

Environment variable DJANGO_SETTINGS_MODULE is Run the command pyt hon nanage. py shel |
undefined. rather than pyt hon.
Error loading module: No module named . You haven’t installed the appropriate database-

specific adapter (e.g., psycopg or MySQLdb).

isn’t an available database backend. Set your DATABASE _ENG NE setting to one of the
valid engine settings described previously.
Perhaps you made a typo?

database does not exist Change the DATABASE_NAME setting to point to a
database that exists, or execute the appropriate
CREATE DATABASE statement in order to create

it.

role does not exist Change the DATABASE_USER setting to point to a
user that exists, or create the user in your
database.

could not connect to server Make sure DATABASE HOST and DATABASE PORT
are set correctly, and make sure the server is
running.

Your First App

Now that you’'ve verified the connection is working, it's time to create a Django app — a bundle of Django
code, including models and views, that lives together in a single Python package and represents a full Django
application.

It’s worth explaining the terminology here, because this tends to trip up beginners. We’d already created a
project, in Chapter 2, so what'’s the difference between a project and an app? The difference is that of
configuration vs. code:

= A project is an instance of a certain set of Django apps, plus the configuration for those apps.

Technically, the only requirement of a project is that it supplies a settings file, which defines the database
connection information, the list of installed apps, the TEMPLATE_DI RS, and so forth.

= An app is a portable set of Django functionality, usually including models and views, that lives together in
a single Python package.

For example, Django comes with a number of apps, such as a commenting system and an automatic
admin interface. A key thing to note about these apps is that they’re portable and reusable across
multiple projects.

There are very few hard-and-fast rules about how you fit your Django code into this scheme; it's flexible. If
you’re building a simple Web site, you may use only a single app. If you’re building a complex Web site with
several unrelated pieces such as an e-commerce system and a message board, you’ll probably want to split
those into separate apps so that you’ll be able to reuse them individually in the future.

Indeed, you don’t necessarily need to create apps at all, as evidenced by the example view functions we’ve
created so far in this book. In those cases, we simply created a file called vi ews. py, filled it with view
functions, and pointed our URLconf at those functions. No “apps” were needed.

However, there’s one requirement regarding the app convention: if you're using Django’s database layer
(models), you must create a Django app. Models must live within apps. Thus, in order to start writing our
models, we’ll need to create a new app.

Within the nysi t e project directory you created in Chapter 2, type this command to create a new app named
books:

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

pyt hon manage. py startapp books

This command does not produce any output, but it does create a books directory within the nmysi t e directory.
Let’s look at the contents of that directory:

books/
_init__.py
nodel s. py
Vi ews. py

These files will contain the models and views for this app.

Have a look at nodel s. py and vi ews. py in your favorite text editor. Both files are empty, except for an import
in nodel s. py. This is the blank slate for your Django app.

Defining Models in Python

As we discussed earlier in this chapter, the “M” in “MTV” stands for “Model.” A Django model is a description of
the data in your database, represented as Python code. It's your data layout — the equivalent of your SQL
CREATE TABLE statements — except it’s in Python instead of SQL, and it includes more than just database
column definitions. Django uses a model to execute SQL code behind the scenes and return convenient Python
data structures representing the rows in your database tables. Django also uses models to represent higher-
level concepts that SQL can’t necessarily handle.

If you’re familiar with databases, your immediate thought might be, “Isn’t it redundant to define data models
in Python and in SQL?” Django works the way it does for several reasons:

= Introspection requires overhead and is imperfect. In order to provide convenient data-access APIs, Django
needs to know the database layout somehow, and there are two ways of accomplishing this. The first way
would be to explicitly describe the data in Python, and the second way would be to introspect the
database at runtime to determine the data models.

This second way seems cleaner, because the metadata about your tables lives in only one place, but it
introduces a few problems. First, introspecting a database at runtime obviously requires overhead. If the
framework had to introspect the database each time it processed a request, or even when the Web server
was initialized, this would incur an unacceptable level of overhead. (While some believe that level of
overhead is acceptable, Django’s developers aim to trim as much framework overhead as possible, and
this approach has succeeded in making Django faster than its high-level framework competitors in
benchmarks.) Second, some databases, notably older versions of MySQL, do not store sufficient metadata
for accurate and complete introspection.

= Writing Python is fun, and keeping everything in Python limits the number of times your brain has to do a
“context switch.” It helps productivity if you keep yourself in a single programming environment/mentality
for as long as possible. Having to write SQL, then Python, and then SQL again is disruptive.

= Having data models stored as code rather than in your database makes it easier to keep your models
under version control. This way, you can easily keep track of changes to your data layouts.

= SQL allows for only a certain level of metadata about a data layout. Most database systems, for example,
do not provide a specialized data type for representing email addresses or URLs. Django models do. The
advantage of higher-level data types is higher productivity and more reusable code.

= SQL is inconsistent across database platforms. If you're distributing a Web application, for example, it’s
much more pragmatic to distribute a Python module that describes your data layout than separate sets of
CREATE TABLE statements for MySQL, PostgreSQL, and SQLite.

A drawback of this approach, however, is that it’s possible for the Python code to get out of sync with what's
actually in the database. If you make changes to a Django model, you'll need to make the same changes
inside your database to keep your database consistent with the model. We’ll detail some strategies for

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

handling this problem later in this chapter.

Finally, we should note that Django includes a utility that can generate models by introspecting an existing
database. This is useful for quickly getting up and running with legacy data.

Your First Model

As an ongoing example in this chapter and the next chapter, we’ll focus on a basic book/author/publisher data
layout. We use this as our example because the conceptual relationships between books, authors, and
publishers are well known, and this is a common data layout used in introductory SQL textbooks. You’'re also
reading a book that was written by authors and produced by a publisher!

We’ll suppose the following concepts, fields, and relationships:

= An author has a salutation (e.g., Mr. or Mrs.), a first name, a last name, an email address, and a
headshot photo.

= A publisher has a name, a street address, a city, a state/province, a country, and a Web site.

= A book has a title and a publication date. It also has one or more authors (a many-to-many relationship
with authors) and a single publisher (a one-to-many relationship — aka foreign key — to publishers).

The first step in using this database layout with Django is to express it as Python code. In the nodel s. py file
that was created by the st art app command, enter the following:

from dj ango. db i nport nodel s

cl ass Publisher (nodel s. Model):
nane = nodel s. Char Fi el d(max| engt h=30)
address = nodel s. Char Fi el d(nax| engt h=50)
city = nodel s. CharFi el d(max| engt h=60)
state_provi nce = nodel s. Char Fi el d(max| engt h=30)
country = nodel s. Char Fi el d(max| engt h=50)
website = nodel s. URLFi el d()

cl ass Aut hor (nodel s. Model) :
sal utati on = nodel s. Char Fi el d(maxl engt h=10)
first_name = nodel s. Char Fi el d(maxl engt h=30)
| ast _nane = nodel s. Char Fi el d(maxl engt h=40)
emai | = nodel s. Enmi | Fi el d()
headshot = nodel s. | mageFi el d(upl oad_to="/tnp')

cl ass Book(nodel s. Mbdel) :
title = nodel s. CharFi el d(maxl engt h=100)
aut hors = nobdel s. ManyToManyFi el d(Aut hor)
publ i sher = nodel s. For ei gnKey(Publ i sher)
publication_date = nodel s. Dat eFi el d()

Let’s quickly examine this code to cover the basics. The first thing to notice is that each model is represented
by a Python class that is a subclass of dj ango. db. nodel s. Model . The parent class, Model , contains all the
machinery necessary to make these objects capable of interacting with a database — and that leaves our
models responsible solely for defining their fields, in a nice and compact syntax. Believe it or not, this is all the
code we need to write to have basic data access with Django.

Each model generally corresponds to a single database table, and each attribute on a model generally
corresponds to a column in that database table. The attribute name corresponds to the column’s name, and
the type of field (e.g., Char Fi el d) corresponds to the database column type (e.g., var char). For example, the
Publ i sher model is equivalent to the following table (assuming PostgreSQL CREATE TABLE syntax):

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

CREATE TABLE "books_publisher" (
"id" serial NOT NULL PRI MARY KEY,
"name" varchar (30) NOT NULL,
"address" varchar (50) NOT NULL,
"city" varchar(60) NOT NULL,
"state_province" varchar(30) NOT NULL,
"country" varchar (50) NOT NULL,
"website" varchar(200) NOT NULL

5
Indeed, Django can generate that CREATE TABLE statement automatically, as we’ll show in a moment.

The exception to the one-class-per-database-table rule is the case of many-to-many relationships. In our
example models, Book has a ManyToManyFi el d called aut hor s. This designates that a book has one or many
authors, but the Book database table doesn’t get an aut hor s column. Rather, Django creates an additional
table — a many-to-many “join table” — that handles the mapping of books to authors.

For a full list of field types and model syntax options, see Appendix B.

Finally, note we haven't explicitly defined a primary key in any of these models. Unless you instruct it
otherwise, Django automatically gives every model an integer primary key field called i d. Each Django model is
required to have a single-column primary key.

Installing the Model

We've written the code; now let’s create the tables in our database. In order to do that, the first step is to
activate these models in our Django project. We do that by adding the books app to the list of installed apps in
the settings file.

Edit the settings. py file again, and look for the | NSTALLED APPS setting. | NSTALLED APPS tells Django which
apps are activated for a given project. By default, it looks something like this:

| NSTALLED APPS = (
' dj ango. contrib.auth',
' dj ango. contri b. contenttypes',
' dj ango. contri b. sessi ons',
' dj ango. contrib.sites',

Temporarily comment out all four of those strings by putting a hash character (#) in front of them. (They're
included by default as a common-case convenience, but we’ll activate and discuss them later.) While you're at
it, modify the default M DDLEWARE_CLASSES and TEMPLATE_CONTEXT_PROCESSORS settings. These depend on
some of the apps we just commented out. Then, add ' nysi t e. books' to the | NSTALLED APPS list, so the
setting ends up looking like this:

M DDLEWARE_CLASSES = (

' dj ango. nm ddl ewar e. cormon. CommonM ddl ewar e'

' dj ango. contri b. sessi ons. m ddl ewar e. Sessi onM ddl ewar e' ,

" dj ango. contri b. aut h. m ddl ewar e. Aut henti cati onM ddl ewar e',
' dj ango. m ddl ewar e. doc. XVi ewM ddl ewar e' ,

)

TEMPLATE_CONTEXT_PROCESSCRS = ()
#. ..

| NSTALLED_APPS = (

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

#' dj ango. contrib.auth',

#' dj ango. contri b. contenttypes',
#' dj ango. contri b. sessi ons',

#' dj ango. contrib.sites',
"nmysite.books',

(As we’re dealing with a single-element tuple here, don’t forget the trailing comma. By the way, this book’s
authors prefer to put a comma after every element of a tuple, regardless of whether the tuple has only a
single element. This avoids the issue of forgetting commas, and there’s no penalty for using that extra
comma.)

"nmysite. books' refers to the books app we’re working on. Each app in | NSTALLED APPS is represented by its
full Python path — that is, the path of packages, separated by dots, leading to the app package.

Now that the Django app has been activated in the settings file, we can create the database tables in our
database. First, let’s validate the models by running this command:

pyt hon manage. py validate

The val i dat e command checks whether your models’ syntax and logic are correct. If all is well, you’'ll see the
message 0 errors found. If you don’t, make sure you typed in the model code correctly. The error output
should give you helpful information about what was wrong with the code.

Any time you think you have problems with your models, run pyt hon manage. py val i date. It tends to catch
all the common model problems.

If your models are valid, run the following command for Django to generate CREATE TABLE statements for your
models in the books app (with colorful syntax highlighting available if you're using Unix):

pyt hon manage. py sql all books

In this command, books is the name of the app. It's what you specified when you ran the command
manage. py startapp. When you run the command, you should see something like this:

BEG N,

CREATE TABLE "books_ publisher" (
"id" serial NOT NULL PRI MARY KEY,
"nanme" varchar(30) NOT NULL,
"address" varchar(50) NOT NULL,
"city" varchar(60) NOT NULL,
"state_ province" varchar(30) NOT NULL,
"country" varchar (50) NOT NULL,
"website" varchar (200) NOT NULL

);

CREATE TABLE "books_book" (
"id" serial NOT NULL PRI MARY KEY,
"title" varchar (100) NOT NULL,
"publisher _id" integer NOT NULL REFERENCES "books publisher" ("id"),
"publication_date" date NOT NULL

)

CREATE TABLE "books_ aut hor" (
"id" serial NOT NULL PRI MARY KEY,
"sal utation" varchar(10) NOT NULL,
"first_name" varchar(30) NOT NULL,
"l ast _nanme" varchar (40) NOT NULL,
"emai |l " varchar (75) NOT NULL,

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

"headshot" varchar (100) NOT NULL
)
CREATE TABLE "books_book_aut hors" (
"id" serial NOT NULL PRI MARY KEY,
"book_id" integer NOT NULL REFERENCES "books_book" ("id"),
"aut hor _id" integer NOT NULL REFERENCES "books_author" ("id"),
UNI QUE ("book_id", "author_id")
JE
CREATE | NDEX books_book _publisher _id ON "books book" ("publisher id");
COW T,

Note the following:

= Table names are automatically generated by combining the name of the app (books) and the lowercase
name of the model (publ i sher, book, and aut hor). You can override this behavior, as detailed in
Appendix B.

= As we mentioned earlier, Django adds a primary key for each table automatically — the i d fields. You can
override this, too.

= By convention, Django appends " _i d" to the foreign key field name. As you might have guessed, you can
override this behavior, too.

= The foreign key relationship is made explicit by a REFERENCES statement.

= These CREATE TABLE statements are tailored to the database you’re using, so database-specific field types
such as aut o_i ncrenent (MySQL), seri al (PostgreSQL), or i nteger prinmary key (SQLite) are handled
for you automatically. The same goes for quoting of column names (e.g., using double quotes or single
quotes). This example output is in PostgreSQL syntax.

The sqgl al | command doesn’t actually create the tables or otherwise touch your database — it just prints
output to the screen so you can see what SQL Django would execute if you asked it. If you wanted to, you
could copy and paste this SQL into your database client, or use Unix pipes to pass it directly. However, Django
provides an easier way of committing the SQL to the database. Run the syncdb command, like so:

pyt hon manage. py syncdb
You’'ll see something like this:

Creating table books publisher
Creating table books book

Creating tabl e books_author
Installing index for books.Book nodel

The syncdb command is a simple “sync” of your models to your database. It looks at all of the models in each
app in your | NSTALLED APPS setting, checks the database to see whether the appropriate tables exist yet, and
creates the tables if they don’t yet exist. Note that syncdb does not sync changes in models or deletions of
models; if you make a change to a model or delete a model, and you want to update the database, syncdb will
not handle that. (More on this later.)

If you run pyt hon manage. py syncdb again, nothing happens, because you haven’t added any models to the
books app or added any apps to | NSTALLED APPS. Ergo, it's always safe to run pyt hon nmanage. py syncdb — it
won’t clobber things.

If you're interested, take a moment to dive into your database server’'s command-line client and see the
database tables Django created. You can manually run the command-line client (e.g., psqgl for PostgreSQL) or
you can run the command pyt hon manage. py dbshel | , which will figure out which command-line client to
run, depending on your DATABASE SERVER setting. The latter is almost always more convenient.

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

Basic Data Access

Once you’ve created a model, Django automatically provides a high-level Python API for working with those
models. Try it out by running pyt hon nmanage. py shel |l and typing the following:

>>> from books. nodel s i nport Publisher

>>> pl = Publisher(nanme=" Addi son- Wsl ey', address='75 Arlington Street'
city='"Boston', state_ province='MA", country="U S A",

. websi te="http://ww. apress. conl')

>>> pl. save()

>>> p2 = Publisher(name="0O Reilly", address='10 Fawcett St.',
city='Canbridge', state province="MA, country="U S A",
website="http://ww.oreilly.com")

>>> p2.save()

>>> publisher_list = Publisher.objects.all()

>>> publisher _|ist

[<Publ i sher: Publisher object>, <Publisher: Publisher object>]

These few lines of code accomplish quite a bit. Here are the highlights:

= To create an object, just import the appropriate model class and instantiate it by passing in values for
each field.

= To save the object to the database, call the save() method on the object. Behind the scenes, Django
executes an SQL | NSERT statement here.

= To retrieve objects from the database, use the attribute Publ i sher. obj ects. Fetch a list of all Publ i sher
objects in the database with the statement Publ i sher. obj ects. al | (). Behind the scenes, Django
executes an SQL SELECT statement here.

Naturally, you can do quite a lot with the Django database APl — but first, let’s take care of a small annoyance.

Adding Model String Representations

When we printed out the list of publishers, all we got was this unhelpful display that makes it difficult to tell the
Publ i sher objects apart:

[<Publ i sher: Publisher object>, <Publisher: Publisher object>]

We can fix this easily by adding a method called __str__ () to our Publ i sher object. A__str__ () method tells
Python how to display the “string” representation of an object. You can see this in action by adding a
__str__() method to the three models:

from dj ango. db i nport nodel s

cl ass Publ i sher (nodel s. Mbdel) :
nane = nodel s. Char Fi el d(max| engt h=30)
address = nodel s. Char Fi el d(max| engt h=50)
city = nodel s. CharFi el d(max| engt h=60)
state_provi nce = nodel s. Char Fi el d(max| engt h=30)
country nodel s. Char Fi el d(max| engt h=50)
website = nodel s. URLFi el d()

def _ str__ (self):
return sel f.nane

cl ass Aut hor (nopdel s. Model) :
sal utation = nodel s. Char Fi el d(max| engt h=10)

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

first _name = nodel s. Char Fi el d(maxl engt h=30)

| ast _nane = nodel s. Char Fi el d(maxl engt h=40)
emai | = nodel s. Emai | Fi el d()

headshot = nodel s. | mageFi el d(upl oad_to='/tnp')

def _ str_ (self):
return '% %' % (self.first_nane, self.last_nane)

cl ass Book(nodel s. Mbdel) :
title = nodel s. CharFi el d(maxl engt h=100)
aut hors = nodel s. ManyToManyFi el d(Aut hor)
publ i sher = nodel s. For ei gnKey(Publ i sher)
publ i cati on_date = nodel s. Dat eFi el d()

def _ str__ (self):
return self.title

As you can see, a __str__ () method can do whatever it needs to do in order to return a string representation.
Here, the __str__() methods for Publ i sher and Book simply return the object’s name and title, respectively,
but the __str__ () for Aut hor is slightly more complex — it pieces together the first_nane and | ast _nane
fields. The only requirement for __str__ () is that it return a string. If __str__ () doesn’t return a string — if it
returns, say, an integer — then Python will raise a TypeError with a message like

' _str__ returned non-string".

For the changes to take effect, exit out of the Python shell and enter it again with pyt hon nenage. py shel | .
(This is the simplest way to make code changes take effect.) Now the list of Publ i sher objects is much easier
to understand:

>>> from books. nodel s i nport Publisher

>>> publisher_list = Publisher.objects.all()

>>> publisher [ist

[<Publ i sher: Addi son-Wesl ey>, <Publisher: O Reilly>]

Make sure any model you define has a __str__ () method — not only for your own convenience when using
the interactive interpreter, but also because Django uses the output of __str__ () in several places when it
needs to display objects.

Finally, note that __str__() is a good example of adding behavior to models. A Django model describes more
than the database table layout for an object; it also describes any functionality that object knows how to do.
__str__() is one example of such functionality — a model knows how to display itself.

Inserting and Updating Data

You've already seen this done: to insert a row into your database, first create an instance of your model using
keyword arguments, like so:

>>> p = Publisher(nane=" Apress',
addr ess=' 2855 Tel egraph Ave.',
city='Berkel ey',
state_provi nce=' CA',
country="U S A ',
websi te="http://ww. apress. conl')

This act of instantiating a model class does not touch the database.

To save the record into the database (i.e., to perform the SQL | NSERT statement), call the object’s save()

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

method:
>>> p.save()
In SQL, this can roughly be translated into the following:

| NSERT | NTO book_publ i sher
(nanme, address, city, state_province, country, website)
VALUES
(' Apress', '2855 Telegraph Ave.', 'Berkeley', 'CA',
"US A', "http://ww. apress.conl');

Because the Publ i sher model uses an autoincrementing primary key i d, the initial call to save() does one
more thing: it calculates the primary key value for the record and sets it to the i d attribute on the instance:

>>> p.id
52 # this will differ based on your own data

Subsequent calls to save() will save the record in place, without creating a new record (i.e., performing an
SQL UPDATE statement instead of an | NSERT):

>>> p.nanme = ' Apress Publishing'
>>> p. save()

The preceding save() statement will result in roughly the following SQL:

UPDATE book_publ i sher SET
nane = 'Apress Publishing',
address = ' 2855 Tel egraph Ave.',
city = 'Berkeley',

state_province = 'CA',
country = '"U S A",
website = '"http://ww. apress. con

VWHERE id = 52;

Selecting Objects

Creating and updating data sure is fun, but it is also useless without a way to sift through that data. We’ve
already seen a way to look up all the data for a certain model:

>>> Publ i sher.objects.all()
[<Publ i sher: Addi son-Wesley>, <Publisher: O Reilly> <Publisher: Apress Publishing>]

This roughly translates to this SQL:

SELECT
id, nane, address, city, state province, country, website
FROM book_publ i sher;

Note

Notice that Django doesn’t use SELECT * when looking up data and instead lists all fields
explicitly. This is by design: in certain circumstances SELECT * can be slower, and (more
important) listing fields more closely follows one tenet of the Zen of Python: “Explicit is better
than implicit.”

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

For more on the Zen of Python, try typing i nport thi s at a Python prompt.

Let’'s take a close look at each part of this Publ i sher. obj ects. all () line:

= First, we have the model we defined, Publ i sher . No surprise here: when you want to look up data, you
use the model for that data.

= Next, we have this obj ect s business. Technically, this is a manager. Managers are discussed in detail in
Appendix B. For now, all you need to know is that managers take care of all “table-level” operations on
data including, most important, data lookup.

All models automatically get a obj ect s manager; you’ll use it any time you want to look up model
instances.

= Finally, we have al | () . This is a method on the obj ect s manager that returns all the rows in the
database. Though this object looks like a list, it's actually a QuerySet — an object that represents some
set of rows from the database. Appendix C deals with QuerySets in detail. For the rest of this chapter,
we’ll just treat them like the lists they emulate.

Any database lookup is going to follow this general pattern — we’ll call methods on the manager attached to
the model we want to query against.

Filtering Data

While fetching all objects certainly has its uses, most of the time we’re going to want to deal with a subset of
the data. We’ll do this with the filter() method:

>>> Publ i sher. objects.filter(nane="Apress Publishing")
[<Publ i sher: Apress Publishing>]

filter() takes keyword arguments that get translated into the appropriate SQL WHERE clauses. The preceding
example would get translated into something like this:

SELECT

id, nane, address, city, state province, country, website
FROM book_publ i sher
VWHERE nane = ' Apress Publishing';

You can pass multiple arguments into fil ter () to narrow down things further:

>>> Publisher.objects.filter(country="U S. A ", state_provi nce="CA")
[<Publ i sher: Apress Publishing>]

Those multiple arguments get translated into SQL AND clauses. Thus, the example in the code snippet
translates into the following:

SELECT

id, nane, address, city, state province, country, website
FROM book_publ i sher
WHERE country = 'U S.A' AND state_province = 'CA ;

Notice that by default the lookups use the SQL = operator to do exact match lookups. Other lookup types are
available:

>>> Publisher.objects.filter(name__contai ns="press")
[<Publ i sher: Apress Publishing>]

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

That’s a double underscore there between nane and cont ai ns. Like Python itself, Django uses the double
underscore to signal that something “magic” is happening — here, the __cont ai ns part gets translated by
Django into a SQL LI KE statement:

SELECT

id, nane, address, city, state province, country, website
FROM book_publ i sher
WHERE nane LIKE ' %ress% ;

Many other types of lookups are available, including i cont ai ns (case-insensitive LI KE), startswi t h and
endswi t h, and range (SQL BETWEEN queries). Appendix C describes all of these lookup types in detail.

Retrieving Single Objects

Sometimes you want to fetch only a single object. That's what the get () method is for:

>>> Publ i sher. obj ects. get (nane="Apress Publ i shi ng")
<Publ i sher: Apress Publi shi ng>

Instead of a list (rather, QuerySet), only a single object is returned. Because of that, a query resulting in
multiple objects will cause an exception:

>>> Publ i sher. obj ects. get(country="U.S. A ")
Traceback (nost recent call last):

AssertionError: get() returned nore than one Publisher -- it returned 2
A query that returns no objects also causes an exception:

>>> Publ i sher. obj ect s. get (nane="Pengui n")
Traceback (nost recent call last):

DoesNot Exi st: Publ i sher matching query does not exist.

Ordering Data

As you play around with the previous examples, you might discover that the objects are being returned in a
seemingly random order. You aren’t imagining things; so far we haven’t told the database how to order its
results, so we're simply getting back data in some arbitrary order chosen by the database.

That’s obviously a bit silly; we wouldn’t want a Web page listing publishers to be ordered randomly. So, in
practice, we’ll probably want to use order _by() to reorder our data into a useful list:

>>> Publ i sher. obj ects. order_by("name")
[<Publ i sher: Apress Publishing> <Publisher: Addison-Wesley> <Publisher: O Reilly>]

This doesn’t look much different from the earlier al | () example, but the SQL now includes a specific ordering:

SELECT

id, nane, address, city, state province, country, website
FROM book_publ i sher
ORDER BY nane;

We can order by any field we like:

>>> Publ i sher. obj ects. order_by("address")
[<Publ i sher: O Reilly>, <Publisher: Apress Publishing> <Publisher: Addison-Wsley>]

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

>>> Publ i sher. obj ects. order_by("state_ province")
[<Publ i sher: Apress Publishing> <Publisher: Addison-Wesley> <Publisher: O Reilly>]

and by multiple fields:

>>> Publ i sher. obj ects. order_by("state_ provice", "address")
[<Publ i sher: Apress Publishing> <Publisher: O Reilly> <Publisher: Addison-Wsley>]

We can also specify reverse ordering by prefixing the field name with a - (that’s a minus character):

>>> Publ i sher. obj ects. order_by("-nanme")
[<Publ i sher: O Reilly>, <Publisher: Apress Publishing> <Publisher: Addison-Wsley>]

While this flexibility is useful, using order _by() all the time can be quite repetitive. Most of the time you'll
have a particular field you usually want to order by. In these cases, Django lets you attach a default ordering
to the model:

cl ass Publ i sher(nodel s. Mbdel) :
nane = nodel s. Char Fi el d(max| engt h=30)
address = nodel s. Char Fi el d(max| engt h=50)
city = nodel s. CharFi el d(max| engt h=60)
state_provi nce = nodel s. Char Fi el d(max| engt h=30)
country = nodel s. Char Fi el d(max| engt h=50)
website = nodel s. URLFi el d()

def _ str_ (self):
return sel f.nane

cl ass Met a:
ordering = ["nane"]

This ordering = ["nane"] bit tells Django that unless an ordering is given explicitly with or der _by() , all
publishers should be ordered by name.

What’s This Meta Thing?

Django uses this internal cl ass Met a as a place to specify additional metadata about a model. It's
completely optional, but it can do some very useful things. See Appendix B for the options you
can put under Met a.

Chaining Lookups

You’ve seen how you can filter data, and you’ve seen how you can order it. At times, of course, you’re going to
want to do both. In these cases, you simply “chain” the lookups together:

>>> Publisher.objects.filter(country="U S. A ").order_by("-name")
[<Publ i sher: O Reilly>, <Publisher: Apress Publishing> <Publisher: Addison-Wsley>]

As you might expect, this translates to a SQL query with both a WVHERE and an ORDER BY:

SELECT
id, nane, address, city, state province, country, website
FROM book_publ i sher
WHERE country = 'U S A
ORDER BY nane DESC,

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

You can keep chaining queries as long as you like. There’s no limit.

Slicing Data
Another common need is to look up only a fixed number of rows. Imagine you have thousands of publishers in
your database, but you want to display only the first one. You can do this using Python’s standard list slicing

syntax:

>>> Publ i sher.objects.all()[0]
<Publ i sher: Addi son- sl ey>

This translates roughly to:

SELECT
id, nane, address, city, state province, country, website
FROM book_publ i sher
ORDER BY nane
LIMT 1,

And More...

We’'ve only just scratched the surface of dealing with models, but you should now know enough to
understand all the examples in the rest of the book. When you’re ready to learn the complete
details behind object lookups, turn to Appendix C.

Deleting Objects

To delete objects, simply call the del et e() method on your object:

>>> p = Publisher. obj ects. get(nane="Addi son- Wesl ey")
>>> p. del ete()

>>> Publ i sher. objects.all ()

[<Publ i sher: Apress Publishing> <Publisher: O Reilly>]

You can also delete objects in bulk by calling del et e() on the result of some lookup:

>>> publishers = Publisher.objects.all()
>>> publishers. del et e()
>>> Publ i sher. objects.all ()

[]

Note

Deletions are permanent, so be careful! In fact, it’s usually a good idea to avoid deleting objects
unless you absolutely have to — relational databases don’t do “undo” so well, and restoring from

backups is painful.

It's often a good idea to add “active” flags to your data models. You can look up only “active”
objects, and simply set the active field to Fal se instead of deleting the object. Then, if you realize

you’ve made a mistake, you can simply flip the flag back.

Making Changes to a Database Schema

When we introduced the syncdb command earlier in this chapter, we noted that syncdb merely creates tables
that don’t yet exist in your database — it does not sync changes in models or perform deletions of models. If

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

you add or change a model’s field, or if you delete a model, you’ll need to make the change in your database
manually. This section explains how to do that.

When dealing with schema changes, it's important to keep a few things in mind about how Django’s database
layer works:

= Django will complain loudly if a model contains a field that has not yet been created in the database table.
This will cause an error the first time you use the Django database API to query the given table (i.e., it will
happen at code execution time, not at compilation time).

= Django does not care if a database table contains columns that are not defined in the model.

= Django does not care if a database contains a table that is not represented by a model.

Making schema changes is a matter of changing the various pieces — the Python code and the database itself
— in the right order.

Adding Fields

When adding a field to a table/model in a production setting, the trick is to take advantage of the fact that
Django doesn’t care if a table contains columns that aren’t defined in the model. The strategy is to add the
column in the database, and then update the Django model to include the new field.

However, there’s a bit of a chicken-and-egg problem here, because in order to know how the new database
column should be expressed in SQL, you need to look at the output of Django’s nanage. py sql al | command,
which requires that the field exist in the model. (Note that you’re not required to create your column with
exactly the same SQL that Django would, but it's a good idea to do so, just to be sure everything’s in sync.)

The solution to the chicken-and-egg problem is to use a development environment instead of making the
changes on a production server. (You are using a testing/development environment, right?) Here are the
detailed steps to take.

First, take these steps in the development environment (i.e., not on the production server):

1. Add the field to your model.

2. Run nanage. py sql all [yourapp] to see the new CREATE TABLE statement for the model. Note the
column definition for the new field.

3. Start your database’s interactive shell (e.g., psql or nysql , or you can use nanage. py dbshel |). Execute
an ALTER TABLE statement that adds your new column.

4. (Optional.) Launch the Python interactive shell with manage. py shel | and verify that the new field was
added properly by importing the model and selecting from the table (e.g., MyModel . obj ects. al |l ()[:5]).

Then on the production server perform these steps:

1. Start your database’s interactive shell.
2. Execute the ALTER TABLE statement you used in step 3 of the development environment steps.

3. Add the field to your model. If you’re using source-code revision control and you checked in your change
in development environment step 1, now is the time to update the code (e.g., svn updat e, with
Subversion) on the production server.

4. Restart the Web server for the code changes to take effect.

For example, let’s walk through what we’d do if we added a num pages field to the Book model described
earlier in this chapter. First, we’d alter the model in our development environment to look like this:

cl ass Book(nodel s. Mbdel) :
title = nodel s. CharFi el d(maxl engt h=100)
aut hors = nodel s. ManyToManyFi el d(Aut hor)
publ i sher = nodel s. For ei gnKey(Publ i sher)
publ i cati on_date = nodel s. Dat eFi el d()
num pages = nodel s. I nt eger Fi el d(bl ank=True, null=True)

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

def __str__ (self):
return self.title

(Note: Read the “Adding NOT NULL Columns” sidebar for important details on why we included bl ank=Tr ue

and nul | =Tr ue.)

Then we’d run the command nanage. py sql al | books to see the CREATE TABLE statement. It would look

something like this:

CREATE TABLE "books_book" (
"id" serial NOT NULL PRI MARY KEY.
"title" varchar (100) NOT NULL,
"publisher _id" integer NOT NULL REFERENCES "books_ publisher" ("id"),

"publication_date" date NOT NULL,
"num pages” integer NULL

)5
The new column is represented like this:
"num pages" integer NULL

Next, we’d start the database’s interactive shell for our development database by typing psql (for
PostgreSQL), and we’d execute the following statements:

ALTER TABLE books_book ADD COLUWN num pages i nteger;

Adding NOT NULL Columns

There’s a subtlety here that deserves mention. When we added the num pages field to our model,
we included the bl ank=True and nul | =Tr ue options. We did this because a database column wiill

contain NULL values when you first create it.

However, it's also possible to add columns that cannot contain NULL values. To do this, you have
to create the column as NULL, then populate the column’s values using some default(s), and then
alter the column to set the NOT NULL modifier. For example:

BEG N,
ALTER TABLE books_book ADD COLUWMN num pages i nteger;

UPDATE books_book SET num pages=0;
ALTER TABLE books_book ALTER COLUWN num pages SET NOT NULL;

COW T;

If you go down this path, remember that you should leave off bl ank=Tr ue and nul | =Tr ue in your

model.

After the ALTER TABLE statement, we’d verify that the change worked properly by starting the Python shell and

running this code:

>>> from nysite. books. nodel s i nport Book
>>> Book. objects.all ()[:5]

If that code didn’t cause errors, we’d switch to our production server and execute the ALTER TABLE statement
on the production database. Then, we’d update the model in the production environment and restart the Web

server.

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

Chapter 5: Interacting with a Database: Models

Removing Fields

Removing a field from a model is a lot easier than adding one. To remove a field, just follow these steps:
1. Remove the field from your model and restart the Web server.

2. Remove the column from your database, using a command like this:

ALTER TABLE books_book DROP COLUWN num pages;

Removing Many-to-Many Fields

Because many-to-many fields are different than normal fields, the removal process is different:
1. Remove the ManyToManyFi el d from your model and restart the Web server.

2. Remove the many-to-many table from your database, using a command like this:

DROP TABLE books_books publ i shers;

Removing Models

Removing a model entirely is as easy as removing a field. To remove a model, just follow these steps:
1. Remove the model from your nodel s. py file and restart the Web server.

2. Remove the table from your database, using a command like this:

DROP TABLE books_book;

What’s Next?

Once you've defined your models, the next step is to populate your database with data. You might have legacy
data, in which case Chapter 16 will give you advice about integrating with legacy databases. You might rely on

site users to supply your data, in which case Chapter 7 will teach you how to process user-submitted form
data.

But in some cases, you or your team might need to enter data manually, in which case it would be helpful to
have a Web-based interface for entering and managing data. The next chapter covers Django’s admin
interface, which exists precisely for that reason.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter05/[2009.01.07. 10:39:25]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 6: The Django Administration Site

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 6: The Django Administration Site

For a certain class of Web sites, an admin interface is an essential part of the infrastructure. This is a Web-
based interface, limited to trusted site administrators, that enables the adding, editing and deletion of site
content. The interface you use to post to your blog, the backend site managers use to moderate reader-
generated comments, the tool your clients use to update the press releases on the Web site you built for them
— these are all examples of admin interfaces.

There’s a problem with admin interfaces, though: it’s boring to build them. Web development is fun when
you're developing public-facing functionality, but building admin interfaces is always the same. You have to
authenticate users, display and handle forms, validate input, and so on. It's boring, and it's repetitive.

So what’s Django’s approach to these boring, repetitive tasks? It does it all for you—in just a couple of lines of
code, no less. With Django, building an admin interface is a solved problem.

This chapter is about Django’s automatic admin interface. This feature works by reading metadata in your
model to provide a powerful and production-ready interface that site administrators can start using
immediately. Here, we discuss how to activate, use, and customize this feature.

Activating the Admin Interface

We think the admin interface is the coolest part of Django—and most Djangonauts agree—but since not
everyone actually needs it, it’s an optional piece. That means there are three steps you’ll need to follow to
activate it:

1. Add admin metadata to your models.

Not all models can (or should) be editable by admin users, so you need to “mark” models that should
have an admin interface. You do that by adding an inner Adni n class to your model (alongside the Met a
class, if you have one). So, to add an admin interface to our Book model from the previous chapter, we
use this:

cl ass Book(nodel s. Mbdel) :
title = nodel s. Char Fi el d(max| engt h=100)
aut hors = nodel s. ManyToManyFi el d(Aut hor)
publ i sher = nodel s. For ei gnKey(Publ i sher)
publication_date = nodel s. Dat eFi el d()
num pages = nodel s. | nt egerFi el d(bl ank=True, nul |l =True)

def __str__(self):
return self.title

cl ass Adni n:
pass

The Adnmi n declaration flags the class as having an admin interface. There are a number of options that
you can put beneath Adm n, but for now we’re sticking with all the defaults, so we put pass in there to
signify to Python that the Admi n class is empty.

If you’re following this example with your own code, it’'s probably a good idea to add Adni n declarations

http://www.djangobook.com/en/1.0/chapter06/[2009.01.07. 10:39:42]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 6: The Django Administration Site

to the Publ i sher and Aut hor classes at this point.

2. Install the admin application. Do this by adding " dj ango. contri b. adm n" to your | NSTALLED APPS
setting.

3. If you've been following along, make sure that "dj ango. contri b. sessions", "dj ango. contri b. auth",
and "dj ango. contrib. contenttypes" are uncommented, since the admin application depends on them.
Also uncomment all the lines in the M DDLEWARE_CLASSES setting tuple and delete the
TEMPLATE_CONTEXT_PROCESSOR setting to allow it to take the default values again.

4. Run pyt hon manage. py syncdb. This step will install the extra database tables the admin interface uses.

Note

When you first run syncdb with "dj ango. contri b. aut h" in INSTALLED_APPS, you'll be asked

about creating a superuser. If you didn’t do so at that time, you’ll need to run
dj ango/ contri b/ aut h/ bi n/ creat e_super user. py to create an admin user. Otherwise, you

won’t be able to log in to the admin interface.

5. Add the URL pattern to your url s. py. If you're still using the one created by st art proj ect , the admin
URL pattern should be already there, but commented out. Either way, your URL patterns should look like
the following:

from dj ango. conf.urls.defaults inport *

url patterns = patterns('',
(r*~admn/', include('django.contrib.admn.urls")),

That’s it. Now run pyt hon manage. py runserver to start the development server. You’'ll see something like
this:

Val i dati ng nodel s. ..
0 errors found.

Dj ango version 0.96, using settings 'nysite.settings'
Devel opment server is running at http://127.0.0.1: 8000/
Quit the server with CONTROL-C.

Now you can visit the URL given to you by Django (http://127.0.0. 1: 8000/ adm n/ in the preceding
example), log in, and play around.

Using the Admin Interface

The admin interface is designed to be used by nontechnical users, and as such it should be pretty self-
explanatory. Nevertheless, a few notes about the features of the admin interface are in order.

The first thing you’ll see is a login screen, as shown in Figure 6-1.

http://www.djangobook.com/en/1.0/chapter06/[2009.01.07. 10:39:42]

Chapter 6: The Django Administration Site

OO Log in | Django site admin |

i 4 b @ €A http://127.0.0.1:8000/admin/ Al Q- Google

Django administration

Username; |

Password:

P —
[Login)

A
R ———

Figure 6-1. Django’s login screen

You’'ll use the username and password you set up when you added your superuser. Once you're logged in,
you'll see that you can manage users, groups, and permissions (more on that shortly).

Each object given an Adni n declaration shows up on the main index page, as shown in Figure 6-2.

o000 Site administration | Django site admin |

< » A hitp://127.0.0.1:8000/admin/ @ B1Qr Coogle

Django administration Welcome, jacob. Documentation / Change password / Log out

Site administration

Recent Actions

Groups feadd o Change My Actions
Users deAdd Change None available
Sites gpadd #Change

Authors diAdd < Change

Books gAdd #Change

Publishers deadd # Change

A
A A A A A A A A A A A A A A A A A A EEEEI— .

Figure 6-2. The main Django admin index

http://www.djangobook.com/en/1.0/chapter06/[2009.01.07. 10:39:42]

Chapter 6: The Django Administration Site

Links to add and change objects lead to two pages we refer to as object change lists and edit forms. Change
lists are essentially index pages of objects in the system, as shown in Figure 6-3.

e 6 Select book to change | Django site admin |

| 4 b + | € http://localhost: 8000 /admin/ch6/book/ @"foc Google

Django administration Welcome, jacob. Documentation | Change password | Log out

Home

]

Select book to change
Book
The Django Book

Pro C55 Technigues
The Little Schemer
Applied Cryptography

Design Patterns

5 books

A

Figure 6-3. A typical change list view

A number of options control which fields appear on these lists and the appearance of extra features like date
drill-downs, search fields, and filter interfaces. We discuss these features in more detail shortly.

Edit forms are used to modify existing objects and create new ones (see Figure 6-4). Each field defined in your
model appears here, and you’ll notice that fields of different types get different widgets (e.g., date/time fields
have calendar controls, foreign keys use a select box, etc.).

http://www.djangobook.com/en/1.0/chapter06/[2009.01.07. 10:39:42]

Chapter 6: The Django Administration Site

Ealala) Change book | Django site admin 1
E E] A http://127.0.0.1:8000/admin/ch6/boak/4/ @ 2Q~ Google]
Django administration Welcome, jacob. Documentation | Change password / Log out

| Home » Books » The Django B |

Change book | History]
Title: The Django Book
Publisher: " Apress) =
Publication 2007-04-01 | Today | [
date: o
Authers: Daniel Friedman &+
Matthias Felleisen
Erich Gamma
Bruce Schneier
Adrian Holovaty
Jacob Kaplan-Moss
R’ Delete ("Save and add another) ("Save and continue editing | [Save |

Figure 6-4. A typical edit form

You'll notice that the admin interface also handles input validation for you. Try leaving a required field blank or
putting an invalid time into a time field, and you’ll see those errors when you try to save, as shown in Figure 6-
5.

[.8 a6 Change book | Django site admin

A hitp://127.0.0.1:8000/adminch6/boak/4/ Q@ [El(Q~ Google)

Django administration

Home » Books » The Django Boo

Change book [History

| @ Please correct the errors below. |

A This field is required.
Title:

Publisher: [Apress =k

Publication friday Today | (£
date:
Authors: Daniel Friedman =

Matthias Felleisen
Erich Gamma
Bruce Schneier
Adrian Holovaty
Jacob Kaplan-Moss

Delete ("Save and add another | ("Save and continue editing | [Save |

Figure 6-5. An edit form displaying errors

http://www.djangobook.com/en/1.0/chapter06/[2009.01.07. 10:39:42]

Chapter 6: The Django Administration Site

When you edit an existing object, you’ll notice a History button in the upper-right corner of the window. Every
change made through the admin interface is logged, and you can examine this log by clicking the History
button (see Figure 6-6).

Eslala) Change history: The Django Book | Django site admin

i 4 b @hrtp:,.’,f12?.ID,D.l:BGDlD.n'admin,fchE.fbook,fd-,fhistom (H] Q- Google "

Django administration Welcome, jacob. Documentation | Change password / Log out

Home » Books » The Django Book » Hist

Change history: The Django Book

Date /time User Action

Nowv. 12, 2006, 11:21 a.m. jacoh

Nov. 12, 2006, 11:22 a.m. jacoh Changed publication date.
Nov. 12, 2006, 11:22 a.m. jacoh Changed publication date.
Nov. 12, 2006, 11:22 a.m. jacoh Changed publisher.

Nowv. 12, 2006, 11:23 a.m. jacob Changed title and publisher,
Nov. 12, 2006, 11:23 a.m. jacob Changed title.

)
Figure 6-6. Django’s object history page
When you delete an existing object, the admin interface asks you to confirm the delete action to avoid costly

mistakes. Deletions also cascade; the deletion confirmation page shows you all the related objects that will be
deleted as well (see Figure 6-7).

http://www.djangobook.com/en/1.0/chapter06/[2009.01.07. 10:39:42]

Chapter 6: The Django Administration Site

Halala) Are you sure? | Django site admin
4 b [+ + | @ http://127.0.0.1:8000/admin/ch6/publisher/1/delete/ Q@ B Q~ Google

Djarlgo administration Welcome, jacob. Documentation [Change password | Log out

Home » Publishers
Are you sure?
Are you sure you want to delete the publisher "Apress"? All of the following related items will be deleted:

n Publisher: Apress
= Book: The Django Book

r 4 b Y
| Yes, I'm sure |

Figure 6-7. Django’s delete confirmation page

Users, Groups, and Permissions

Since you’re logged in as a superuser, you have access to create, edit, and delete any object. However, the
admin interface has a user permissions system that you can use to give other users access only to the
portions of the interface that they need.

You edit these users and permissions through the admin interface just like any other object. The link to the
User and Group models is there on the admin index along with all the objects you've defined yourself.

User objects have the standard username, password, e-mail, and real name fields you might expect, along
with a set of fields that define what the user is allowed to do in the admin interface. First, there’s a set of
three flags:

= The “is active” flag controls whether the user is active at all. If this flag is off, the user has no access to
any URLs that require login.

= The “is staff” flag controls whether the user is allowed to log in to the admin interface (i.e., whether that
user is considered a “staff member” in your organization). Since this same user system can be used to
control access to public (i.e., non-admin) sites (see Chapter 12), this flag differentiates between public
users and administrators.

= The “is superuser” flag gives the user full, unfettered access to every item in the admin interface; regular
permissions are ignored.

“Normal” admin users—that is, active, non-superuser staff members—are granted access that depends on a
set of assigned permissions. Each object editable through the admin interface has three permissions: a create
permission, an edit permission, and a delete permission. Assigning permissions to a user grants the user
access to do what is described by those permissions.

Note

Access to edit users and permissions is also controlled by this permission system. If you give
someone permission to edit users, she will be able to edit her own permissions, which might not

http://www.djangobook.com/en/1.0/chapter06/[2009.01.07. 10:39:42]

Chapter 6: The Django Administration Site

be what you want!

You can also assign users to groups. A group is simply a set of permissions to apply to all members of that
group. Groups are useful for granting identical permissions to large number of users.

Customizing the Admin Interface

You can customize the way the admin interface looks and behaves in a number of ways. We cover just a few of
them in this section as they relate to our Book model; Chapter 17 covers customizing the admin interface in
detail.

As it stands now, the change list for our books shows only the string representation of the model we added to
its __str__. This works fine for just a few books, but if we had hundreds or thousands of books, it would be
very hard to locate a single needle in the haystack. However, we can easily add some display, searching, and
filtering functions to this interface. Change the Adm n declaration as follows:

cl ass Book(nodel s. Model) :
title = nodel s. CharFi el d(maxl engt h=100)
aut hors = nodel s. ManyToManyFi el d(Aut hor)
publ i sher = nodel s. For ei gnKey(Publ i sher)
publ i cati on_date nodel s. Dat eFi el d()

cl ass Adm n:
list display = ("title', 'publisher', 'publication_date")
list filter = ('publisher', 'publication_date')
ordering = ('-publication_date',)
search fields = ("title',)

These four lines of code dramatically change our list interface, as shown in Figure 6-8.

SUSNS) Select book to change | Django site admin |

. <. b + | @ htp://localhost: 8000 /admin/chE /book/ @ (- Google

Django administration Welcome, Jacob. Documentation / Change password / Log out

Home

Select book to change

Qi Go

Title Publisher Publication date B?’ PN

The Django Book Apress April 1, 2007 A_'I

Pro C55 Technigues Apress Jan. 3, 2007

The Little Schemer MIT Press Dec. 21, 1995

Applied Cryptography | Wiley Oct. 18, 1995

Design Patterns Addison-Wesley Jan. 15, 1995

5 books By publication date

Any date

Figure 6-8. Modified change list page

http://www.djangobook.com/en/1.0/chapter06/[2009.01.07. 10:39:42]

Chapter 6: The Django Administration Site
Each of those lines instructed the admin interface to construct a different piece of this interface:

= The | i st_di spl ay option controls which columns appear in the change list table. By default, the change
list displays only a single column that contains the object’s string representation. Here, we’'ve changed
that to show the title, publisher, and publication date.

= The list_filter option creates the filtering bar on the right side of the list. We’ve allowed filtering by
date (which allows you to see only books published in the last week, month, etc.) and by publisher.

You can instruct the admin interface to filter by any field, but foreign keys, dates, Booleans, and fields
with a choi ces attribute work best. The filters show up as long as there are at least 2 values to choose
from.

= The orderi ng option controls the order in which the objects are presented in the admin interface. It's
simply a list of fields by which to order the results; prefixing a field with a minus sign reverses the given
order. In this example, we’re ordering by publication date, with the most recent first.

= Finally, the search_fi el ds option creates a field that allows text searches. It allows searches by the
title field (so you could type Django to show all books with “Django” in the title).

Using these options (and the others described in Chapter 12) you can, with only a few lines of code, make a
very powerful, production-ready interface for data editing.

Customizing the Admin Interface’s Look and Feel

Clearly, having the phrase “Django administration” at the top of each admin page is ridiculous. It’s just
placeholder text.

It's easy to change, though, using Django’s template system. The Django admin site is powered by Django
itself, and its interfaces use Django’s own template system. (Django’s template system was covered in Chapter
4.)

As we explained in Chapter 4, the TEMPLATE_DI RS setting specifies a list of directories to check when loading
Django templates. To customize Django’s admin templates, simply copy the relevant stock admin template
from the Django distribution into your one of the directories pointed-to by TEMPLATE_DI RS.

The admin site finds the “Django administration” header by looking for the template adni n/ base_site. htmi .
By default, this template lives in the Django admin template directory, dj ango/ contri b/ adm n/t enpl at es,
which you can find by looking in your Python si t e- packages directory, or wherever Django was installed. To
customize this base_si te. ht Ml template, copy that template into an admi n subdirectory of whichever directory
you're using in TEMPLATE DI RS. For example, if your TEMPLATE DI RS includes "/ hone/ nyt enpl at es”, then
copy dj ango/ contri b/ adm n/tenpl at es/ adm n/ base_site. htnml to

/ hone/ nyt enpl at es/ adm n/ base_si te. ht M . Don’t forget that admi n subdirectory.

Then, just edit the new adni n/ base_site. ht Ml file to replace the generic Django text with your own site’s
name as you see fit.

Note that any of Django’s default admin templates can be overridden. To override a template, just do the same
thing you did with base_site. ht ml : copy it from the default directory into your custom directory and make
changes to the copy.

You might wonder how, if TEMPLATE_DI RS was empty by default, Django found the default admin templates.
The answer is that, by default, Django automatically looks for templates within a t enpl at es/ subdirectory in
each application package as a fallback. See the “Writing Custom Template Loaders” in Chapter 10 for more
information about how this works.

Customizing the Admin Index Page

On a similar note, you might want to customize the look and feel of the Django admin index page. By default,

http://www.djangobook.com/en/1.0/chapter06/[2009.01.07. 10:39:42]

Chapter 6: The Django Administration Site

it displays all available applications, according to your | NSTALLED APPS setting, sorted by the name of the
application. You might, however, want to change this order to make it easier to find the applications you're
looking for. After all, the index is probably the most important page of the admin interface, so it should be
easy to use.

The template to customize is adni n/i ndex. ht M . (Remember to copy adm n/i ndex. ht M to your custom
template directory as in the previous example.) Edit the file, and you’ll see it uses a template tag called

{% get _adnmi n_app_|list as app_list 9% . This tag retrieves every installed Django application. Instead of
using the tag, you can hard-code links to object-specific admin pages in whatever way you think is best. If
hard-coding links doesn’t appeal to you, see Chapter 10 for details on implementing your own template tags.

Django offers another shortcut in this department. Run the command pyt hon nanage. py adm ni ndex <app>
to get a chunk of template code for inclusion in the admin index template. It’s a useful starting point.

For full details on customizing the look and feel of the Django admin site in general, see Chapter 17.

When and Why to Use the Admin Interface

We think Django’s admin interface is pretty spectacular. In fact, we’d call it one of Django’s “killer features.”
However, we often get asked about “use cases” for the admin interface—when do we use it, and why? Over the
years, we’ve discovered a number of patterns for using the admin interface that we think might be helpful.

Obviously, the admin interface is extremely useful for editing data (fancy that). If you have any sort of data
entry tasks, the admin interface simply can’t be beat. We suspect that the vast majority of readers of this book
will have a whole host of data entry tasks.

Django’s admin interface especially shines when nontechnical users need to be able to enter data; that’s the
purpose behind the feature, after all. At the newspaper where Django was first developed, development of a
typical online feature—a special report on water quality in the municipal supply, say—goes something like this:

= The reporter responsible for the story meets with one of the developers and goes over the available data.
= The developer designs a model around this data and then opens up the admin interface to the reporter.

= While the reporter enters data into Django, the programmer can focus on developing the publicly
accessible interface (the fun part!).

In other words, the raison d’étre of Django’s admin interface is facilitating the simultaneous work of content
producers and programmers.

However, beyond the obvious data entry tasks, we find the admin interface useful in a few other cases:

= Inspecting data models: The first thing we do when we’ve defined a new model is to call it up in the
admin interface and enter some dummy data. This is usually when we find any data modeling mistakes;
having a graphical interface to a model quickly reveals problems.

= Managing acquired data: There’s little actual data entry associated with a site like
http://chicagocri nme. or g, since most of the data comes from an automated source. However, when

problems with the automatically acquired data crop up, it’s useful to be able to go in and edit that data
easily.

What’s Next?

So far we’ve created a few models and configured a top-notch interface for editing data. In the next chapter,
we’ll move on to the real “meat and potatoes” of Web development: form creation and processing.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter06/[2009.01.07. 10:39:42]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 7: Form Processing

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 7: Form Processing

Guest author: Simon Willison

After following along with the last chapter, you should now have a fully functioning if somewhat simple site. In
this chapter, we’ll deal with the next piece of the puzzle: building views that take input from readers.

We'll start by making a simple search form “by hand” and looking at how to handle data submitted from the
browser. From there, we’ll move on to using Django’s forms framework.

Search

The Web is all about search. Two of the Net’s biggest success stories, Google and Yahoo, built their multi-
billion-dollar businesses around search. Nearly every site sees a large percentage of traffic coming to and from
its search pages. Often the difference between the success or failure of a site is the quality of its search. So it
looks like we'd better add some searching to our fledgling books site, no?

We'll start by adding the search view to our URLconf (nmysite. url s). Recall that this means adding something
like (r' "search/$', 'nysite.books.views.search') to the set of URL patterns.

Next, we’ll write this sear ch view into our view module (nysit e. books. vi ews):
from dj ango. db. nodel s i nport Q
from dj ango. shortcuts inport render_to_response

from nodel s i nport Book

def search(request):

query = request.CET.get('q", "')
i f query:
gset = (

Qtitle__icontains=query) |
Q authors__first_nanme__icontai ns=query) |
Q authors__last_name__i cont ai ns=query)
)
results = Book.objects.filter(gset).distinct()
el se:
results [1]
return render _to_response("books/search. htm ", {
"results": results,

"query": query

)

There are a couple of things going on here that you haven’t yet seen. First, there’s request . GET. This is how
you access GET data from Django; POST data is accessed through a similar r equest . POST object. These
objects behave exactly like standard Python dictionaries with some extra features covered in Appendix H.

What’s GET and POST Data?

GET and POST are the two methods that browsers use to send data to a server. Most of the time,

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 7: Form Processing

you’ll see them in HTML form tags:
<form acti on="/books/search/" nethod="get">

This instructs the browser to submit the form data to the URL / books/ sear ch/ using the GET
method.

There are important differences between the semantics of GET and POST that we won’t get into
right now, but see http://www.w3.0rg/2001/tag/doc/whenToUseGet.html if you want to learn
more.

So the line:
query = request.CET.get('q", "')
looks for a GET parameter named q and returns an empty string if that parameter wasn’t submitted.

Note that we’re using the get () method on request . GET, which is potentially confusing. The get () method
here is the one that every Python dictionary has. We’re using it here to be careful: it is not safe to assume
that request . GET contains a ' q' key, so we useget('q', '') to provide a default fallback value of ' ' (the
empty string). If we merely accessed the variable using request. GET[' q'] , that code would raise a KeyErr or
if g wasn’t available in the GET data.

Second, what about this Q business? Q objects are used to build up complex queries — in this case, we're
searching for any books where either the title or the name of one of the authors matches the search query.
Technically, these Q objects comprise a QuerySet, and you can read more about them in Appendix C.

In these queries, i cont ai ns is a case-insensitive search that uses the SQL LI KE operator in the underlying
database.

Since we’re searching against a many-to-many field, it’s possible for the same book to be returned more than
once by the query (e.g., a book with two authors who both match the search query). Adding . di stinct() to
the filter lookup eliminates any duplicate results.

There’s still no template for this search view, however. This should do the trick:

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.01//EN'>
<htm |ang="en">

<head>
<title>Search{% if query % Results{%endif %</title>
</ head>
<body>
<hl>Sear ch</ hl>
<form action="." nethod="CGET">

<l abel for="q">Search: </Iabel>
<i nput type="text" name="q" value="{{ query|escape }}">
<i nput type="subnmit" val ue="Search">

</fornp

{%if query %
<h2>Results for "{{ query|escape }}":</h2>

{%if results %

{% for book in results %
{{ book|escape }}</I 1>
{% endfor %

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

http://www.w3.org/2001/tag/doc/whenToUseGet.html

Chapter 7: Form Processing

</ ul >
{% el se %
<p>No books found</p>
{%endif %
{% endif 9%
</ body>
</htm >

Hopefully by now what this does is fairly obvious. However, there are a few subtleties worth pointing out:

= The form’s action is . , which means “the current URL.” This is a standard best practice: don’t use separate
views for the form page and the results page; use a single one that serves the form and search results.

= We reinsert the value of the query back into the <i nput >. This lets readers easily refine their searches
without having to retype what they searched for.

= Everywhere query and book is used, we pass it through the escape filter to make sure that any
potentially malicious search text is filtered out before being inserted into the page.

It’s vital that you do this with any user-submitted content! Otherwise you open your site up to cross-site
scripting (XSS) attacks. Chapter 19 discusses XSS and security in more detail.

= However, we don’t need to worry about harmful content in your database lookups — we can simply pass
the query into the lookup as is. This is because Django’s database layer handles this aspect of security for
you.

Now we have a working search. A further improvement would be putting a search form on every page (i.e., in
the base template); we’ll let you handle that one yourself.

Next, we’'ll look at a more complex example. But before we do, let’s discuss a more abstract topic: the “perfect
form.”

The “Perfect Form™

Forms can often be a major cause of frustration for the users of your site. Let’s consider the behavior of a
hypothetical perfect form:

= It should ask the user for some information, obviously. Accessibility and usability matter here, so smart
use of the HTML <I abel > element and useful contextual help are important.

= The submitted data should be subjected to extensive validation. The golden rule of Web application
security is “never trust incoming data,” so validation is essential.

= If the user has made any mistakes, the form should be redisplayed with detailed, informative error
messages. The original data should be prefilled, to save the user from having to reenter everything.

= The form should continue to redisplay until all of the fields have been correctly filled.

Constructing the perfect form seems like a lot of work! Thankfully, Django’s forms framework is designed to do
most of the work for you. You provide a description of the form’s fields, validation rules, and a simple
template, and Django does the rest. The result is a “perfect form” with very little effort.

Creating a Feedback Form

The best way to build a site that people love is to listen to their feedback. Many sites appear to have forgotten
this; they hide their contact details behind layers of FAQs, and they seem to make it as difficult as possible to
get in touch with an actual human being.

When your site has millions of users, this may be a reasonable strategy. When you’re trying to build up an
audience, though, you should actively encourage feedback at every opportunity. Let’s build a simple feedback
form and use it to illustrate Django’s forms framework in action.

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

Chapter 7: Form Processing

We'll start by adding adding (r' “contact/$', 'nysite.books.views.contact') to the URLconf, then
defining our form. Forms in Django are created in a similar way to models: declaratively, using a Python class.
Here’s the class for our simple form. By convention, we’ll insert it into a new f or nms. py file within our
application directory:

from dj ango i nport newforns as forns

TOPI C_CHOI CES = (

('general', 'General enquiry'),
('bug', 'Bug report'),
(' suggestion', 'Suggestion'),

cl ass Cont act For n(forns. Forn:
topic = forns. Choi ceFi el d(choi ces=TOPI C_CHO CES)
nmessage = forns. CharFi el d()
sender = forns. Emai |l Fi el d(requi red=Fal se)

“New” Forms? What?

When Django was first released to the public, it had a complicated, confusing forms system. It
made producing forms far too difficult, so it was completely rewritten and is now called
“newforms.” However, there’s still a fair amount of code that depends on the “old” form system,
so for the time being Django ships with two form packages.

As we write this book, Django’s old form system is still available as dj ango. f or n5 and the new
form package as dj ango. newf or ns. At some point that will change and dj ango. f or ns will point to

the new form package. However, to make sure the examples in this book work as widely as
possible, all the examples will refer to dj ango. newf or ns.

A Django form is a subclass of dj ango. newf or ns. For m, just as a Django model is a subclass of
dj ango. db. nodel s. Mbdel . The dj ango. newf or n5 module also contains a number of Fi el d classes; a full list is
available in Django’s documentation at http://www.djangoproject.com/documentation/0.96/newforms/.

Our Cont act For mconsists of three fields: a topic, which is a choice among three options; a message, which is
a character field; and a sender, which is an email field and is optional (because even anonymous feedback can
be useful). There are a number of other field types available, and you can write your own if they don’t cover
your needs.

The form object itself knows how to do a number of useful things. It can validate a collection of data, it can
generate its own HTML “widgets,” it can construct a set of useful error messages and, if we're feeling lazy, it
can even draw the entire form for us. Let’s hook it into a view and see it in action. In vi ews. py:

from dj ango. db. nodel s i nport Q

from dj ango. shortcuts inport render_to_response
from nodel s i nport Book

fromfornms inport ContactForm

def search(request):

query = request.CET.get('q", "'')
i f query:
gset = (

Qtitle__icontains=query) |
Q aut hors__first_nanme__icontai ns=query) |
Q authors__|ast_name__i cont ai ns=query)

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

http://www.djangoproject.com/documentation/0.96/newforms/

Chapter 7: Form Processing

results
el se:
results [1
return render _to_response("books/search. htm ", {
"results": results,

"query": query

Book. obj ects.filter(qgset).distinct()

)

def contact (request):
form = Cont act Form()
return render _to _response('contact.htm', {'form: forn})

and in contact. htnl :

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.01//EN'>
<htm |ang="en">

<head>
<title>Contact us</title>
</ head>
<body>
<hl1>Cont act us</hil>
<form action="." nethod="POST">
<t abl e>
{{ formas_table }}
</t abl e>
<p><i nput type="subm t" val ue="Subm t"></p>
</ fornp
</ body>
</htm >

The most interesting line here is {{ formas_table }}.formis our ContactForm instance, as passed to
render _to_response. as_t abl e is a method on that object that renders the form as a sequence of table rows
(as_ul and as_p can also be used). The generated HTML looks like this:

<tr>
<t h><l abel for="id_topic">Topic:</|abel ></th>
<td>
<sel ect name="topic" id="id_topic">
<option val ue="general ">General enquiry</option>
<option val ue="bug">Bug report</option>
<option val ue="suggesti on">Suggesti on</ opti on>
</ sel ect >
</td>
</[tr>
<tr>

<t h><l abel for="id_nessage">Message: </ | abel ></t h>

<t d><i nput type="text" nane="nessage" id="id_nessage" /></td>
</[tr>
<tr>

<t h><l abel for="id_sender">Sender: </| abel ></t h>

<t d><i nput type="text" nane="sender" id="id_sender" /></td>
</[tr>

Note that the <t abl e> and <f or n» tags are not included; you need to define those yourself in the template,
which gives you control over how the form behaves when it is submitted. Label elements are included, making

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

Chapter 7: Form Processing

forms accessible out of the box.

Our form is currently using a <i nput type="text"> widget for the message field. We don’t want to restrict our
users to a single line of text, so we’ll swap in a <t ext ar ea> widget instead:

cl ass Cont act For n(forns. Forn):
topic = forns. Choi ceFi el d(choi ces=TOPI C_CHO CES)
message = forms. Char Fi el d(wi dget =f orns. Text area())
sender = forns. Emai |l Fi el d(required=Fal se)

The forms framework separates out the presentation logic for each field into a set of widgets. Each field type
has a default widget, but you can easily override the default, or provide a custom widget of your own.

At the moment, submitting the form doesn’t actually do anything. Let’s hook in our validation rules:

def contact (request):
i f request.nethod == 'POST' :
form = Cont act For n{r equest . POST)
el se:
form = Cont act Form()
return render _to_response('contact.htm ', {'form: forn})

A form instance can be in one of two states: bound or unbound. A bound instance is constructed with a
dictionary (or dictionary-like object) and knows how to validate and redisplay the data from it. An unbound
form has no data associated with it and simply knows how to display itself.

Try clicking Submit on the blank form. The page should redisplay, showing a validation error that informs us
that our message field is required.

Try entering an invalid email address as well. The Enai | Fi el d knows how to validate email addresses, at least
to a reasonable level of doubt.

Setting Initial Data

Passing data directly to the form constructor binds that data and indicates that validation should
be performed. Often, though, we need to display an initial form with some of the fields prefilled —
for example, an “edit” form. We can do this with the i niti al keyword argument:

form = Conment Forn(initial={"sender': 'user@xanple.coni})

If our form will always use the same default values, we can configure them in the form definition
itself:

nmessage = forns. CharFi el d(w dget =f or ns. Text area(),
initial ="Replace with your feedback")

Processing the Submission

Once the user has filled the form to the point that it passes our validation rules, we need to do something
useful with the data. In this case, we want to construct and send an email containing the user’s feedback. We’'ll
use Django’s email package to do this.

First, though, we need to tell if the data is indeed valid, and if it is, we need access to the validated data. The
forms framework does more than just validate the data, it also converts it into Python types. Our contact form
only deals with strings, but if we were to use an | nt eger Fi el d or Dat eTi neFi el d, the forms framework would
ensure that we got back a Python integer or dat et i me object, respectively.

To tell whether a form is bound to valid data, call the i s_val i d() method:

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

Chapter 7: Form Processing

form = Cont act For n(r equest . POST)
if formis valid():
Process form data

Now we need access to the data. We could pull it straight out of r equest . POST, but if we did, we’'d miss out on
the type conversions performed by the forms framework. Instead, we use f orm cl ean_dat a:

if formis valid():
topic = formclean_data['topic']
message = formcl ean_dat a[' nessage' |
sender = formcl ean_dat a. get (' sender', 'noreply@xanple.com)
#oo..

Note that since sender is not required, we provide a default when it's missing. Finally, we need to record the

user’s feedback. The easiest way to do this is to email it to a site administrator. We can do that using the
send_nmai | function:

from dj ango. core. mai |l inport send mmail
...
send_nmai | (

' Feedback from your site, topic: %' % topic,
message, sender,
[" admi ni strat or @xanpl e. com]

The send_nmi | function has four required arguments: the email subject, the email body, the “from” address,
and a list of recipient addresses. send_nai | is a convenient wrapper around Django’s Enui | Message class,
which provides advanced features such as attachments, multipart emails, and full control over email headers.

Having sent the feedback email, we’ll redirect our user to a static confirmation page. The finished view function
looks like this:

from dj ango. http inport HttpResponseRedirect
from dj ango. shortcuts inport render_to_response
from dj ango. core. mai|l inport send _mmail
fromforns inport ContactForm

def contact (request):
if request.nethod == 'POST :
form = Cont act For n{r equest . POST)
if formis valid():
topic = formclean_data['topic']
nmessage = formcl ean_dat a[' nessage']
sender = formcl ean_data. get (' sender', 'noreply@xanple.com)
send_nmai | (
' Feedback from your site, topic: %' % topic,
message, sender,
[adm ni strat or @xanpl e. com]
)
return HttpResponseRedirect('/contact/thanks/")
el se:
form = Cont act For n()

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

Chapter 7: Form Processing

return render _to_response('contact.htm ', {'form: forn})

Redirect After POST

If a user selects Refresh on a page that was displayed by a POST request, that request will be
repeated. This can often lead to undesired behavior, such as a duplicate record being added to the
database. Redirect after POST is a useful pattern that can help avoid this scenario: after a
successful POST has been processed, redirect the user to another page rather than returning
HTML directly.

Custom Validation Rules

Imagine we’ve launched our feedback form, and the emails have started tumbling in. There’s just one problem:
some of the emails are just one or two words, hardly enough for a detailed missive. We decide to adopt a new
validation policy: four words or more, please.

There are a number of ways to hook custom validation into a Django form. If our rule is something we will
reuse again and again, we can create a custom field type. Most custom validations are one-off affairs, though,
and can be tied directly to the form class.

We want additional validation on the nessage field, so we need to add a cl ean_nessage method to our form:

cl ass Cont act For n(forns. Forn):
topic = forns. Choi ceFi el d(choi ces=TOPI C_CHO CES)
nmessage = forns. Char Fi el d(w dget =f orns. Text area())
sender = forns. Email Fi el d(requi red=Fal se)

def clean_nessage(self):
message = self.clean_data.get(' nessage', '')
numwords = | en(nmessage.split())
if numwords < 4:
rai se forns. ValidationError("Not enough words!")
return nessage

This new method will be called after the default field validator (in this case, the validator for a required
Char Fi el d). Because the field data has already been partially processed, we need to pull it out of the form’s

cl ean_dat a dictionary.

We naively use a combination of | en() and split() to count the number of words. If the user has entered too
few words, we raise a Val i dati onError . The string attached to this exception will be displayed to the user as
an item in the error list.

It is important that we explicitly return the value for the field at the end of the method. This allows us to
modify the value (or convert it to a different Python type) within our custom validation method. If we forget
the return statement, then None will be returned, and the original value will be lost.

A Custom Look and Feel

The quickest way to customize the form’s presentation is with CSS. The list of errors in particular could do with
some visual enhancement, and the has a class attribute of errorli st for that exact purpose. The
following CSS really makes our errors stand out:

<style type="text/css">
ul .errorlist {
mar gi n: 0;
paddi ng: O;

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

Chapter 7: Form Processing

.errorlist |i {
background-col or: red;
color: white;

di spl ay: bl ock;

font-size: 10px;
margin: 0 O 3px;
paddi ng: 4px 5px;

}

</styl e>

While it’s convenient to have our form’s HTML generated for us, in many cases the default rendering won’t be
right for our application. {{ form as_table }} and friends are useful shortcuts while we develop our
application, but everything about the way a form is displayed can be overridden, mostly within the template
itself.

Each field widget (<i nput type="text">, <sel ect >, <t ext area>, or similar) can be rendered individually by
accessing {{ formfieldnane }}. Any errors associated with a field are available as

{{ formfieldnane.errors }}. We can use these form variables to construct a custom template for our
contact form:

<form action="." method="POST">

<div class="fiel dWapper">
{{ formtopic.errors }}
<l abel for="id_ topic">Kind of feedback:</Iabel >
{{ formtopic }}

</ di v>

<div class="fiel dWapper">
{{ form nessage.errors }}
<l abel for="id_nessage">Your nessage: </| abel >
{{ form nessage }}

</ di v>

<div class="fiel dWapper">
{{ formsender.errors }}
<l abel for="id_sender">Your email (optional):</Iabel>
{{ form sender }}

</ di v>
<p><i nput type="submt" val ue="Subm t"></p>
</fornme

{{ form nmessage.errors }} will display as a <ul class="errorlist"> if errors are present and a blank
string if the field is valid (or the form is unbound). We can also treat f or m nessage. errors as a Boolean or
even iterate over it as a list, for example:

<div class="fieldWapper{% if form nessage.errors % errors{%endif %">
{%if form nessage.errors %

{%for error in formnessage.errors %
{{ error|escape }}</Ili>
{% endf or %
</ ol >
{%endif %
{{ form nessage }}
</ di v>

In the case of validation errors, this will add an “errors” class to the containing <di v> and display the list of

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

Chapter 7: Form Processing

errors in an ordered list.

Creating Forms from Models

Let’'s build something a little more interesting: a form that submits a new publisher to our book application
from Chapter 5.

An important rule of thumb in software development that Django tries to adhere to is Don’t Repeat Yourself
(DRY). Andy Hunt and Dave Thomas in The Pragmatic Programmer define this as follows:

Every piece of knowledge must have a single, unambiguous, authoritative representation
within a system.

Our Publ i sher model class says that a publisher has a name, address, city, state_province, country, and
website. Duplicating this information in a form definition would break the DRY rule. Instead, we can use a
useful shortcut: form for_nodel () :

from nodel s i nport Publisher
from dj ango. newforns i nport formfor_nodel

Publ i sher Form = form for_nodel (Publisher)

Publ i sher For mis a For msubclass, just like the Cont act For mclass we created manually earlier on. We can use
it in much the same way:

fromforns inport PublisherForm

def add_publisher(request):
i f request.nethod == 'POST :
form = Publisher Forn(request. POST)
if formis valid():
form save()
return Htt pResponseRedirect ('/add_publisher/thanks/")
el se:
form = Publisher Form)
return render _to_response(' books/add publisher.htm"', {'form: fornt)

The add_publ i sher. htnl file is almost identical to our original cont act. ht nl template, so it has been omitted.
Also remember to add a new pattern to the URLconf:
(r'~add_publisher/$' , 'nysite.books.views.add_publisher').

There’s one more shortcut being demonstrated here. Since forms derived from models are often used to save
new instances of the model to the database, the form class created by f or m f or _nodel includes a convenient
save() method. This deals with the common case; you're welcome to ignore it if you want to do something a
bit more involved with the submitted data.

formfor_instance() is a related method that can create a preinitialized form from an instance of a model
class. This is useful for creating “edit” forms.

What’s Next?

This chapter concludes the introductory material in this book. The next 13 chapters deal with various advanced
topics, including generating content other than HTML (Chapter 11), security (Chapter 19), and deployment
(Chapter 20).

After these first seven chapters, you should know enough to start writing your own Django projects. The rest
of the material in this book will help fill in the missing pieces as you need them.

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

Chapter 7: Form Processing

We’ll start in Chapter 8 by doubling back and taking a closer look at views and URLconfs (introduced first in
Chapter 3).

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter07/[2009.01.07. 10:39:53]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 8: Advanced Views and URLconfs

The Dj angO BOOk « previous ¢ table of contents

Chapter 8: Advanced Views and URLconfs

In Chapter 3, we explained the basics of Django view functions and URLconfs. This chapter goes into more
detail about advanced functionality in those two pieces of the framework.

URLconf Tricks

There’s nothing “special” about URLconfs — like anything else in Django, they’re just Python code. You can
take advantage of this in several ways, as described in the sections that follow.

Streamlining Function Imports

Consider this URLconf, which builds on the example in Chapter 3:

from dj ango. conf.urls.defaults inport *
frommysite.views inport current_datetine, hours_ahead, hours_behind, now_in_chicago,
now_i n_| ondon

url patterns = patterns('"',
(r'~now $', current _datetine),
(r'~*now plus(\d{1, 2})hours/$', hours_ahead),
(r'~now m nus(\d{1, 2})hours/$', hours_behind),
(r'~now i n_chi cago/ $', now_i n_chi cago),
(r'~now in_|london/$' , now_in_|ondon),

As explained in Chapter 3, each entry in the URLconf includes its associated view function, passed directly as a
function object. This means it’'s necessary to import the view functions at the top of the module.

But as a Django application grows in complexity, its URLconf grows, too, and keeping those imports can be
tedious to manage. (For each new view function, you have to remember to import it, and the import statement
tends to get overly long if you use this approach.) It’s possible to avoid that tedium by importing the vi ews
module itself. This example URLconf is equivalent to the previous one:

from dj ango. conf.urls.defaults inport *
fromnysite inmport views

url patterns = patterns('’',
(r'*now $', views.current_datetine),
(r'~“now plus(\d{1, 2})hours/$', views.hours_ahead),
(r'~“now m nus(\d{1, 2})hours/$', views.hours_behind),
(r'~now i n_chi cago/$', views.now_ in_chicago),
(r'~now in_london/$', views.now.in_|london),

Django offers another way of specifying the view function for a particular pattern in the URLconf: you can pass
a string containing the module name and function name rather than the function object itself. Continuing the
ongoing example:

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 8: Advanced Views and URLconfs

from dj ango. conf.urls.defaults inport *

url patterns = patterns('’',
(r'~now $', 'nysite.views.current datetine'),
(r'~now plus(\d{1,2})hours/$', 'nysite.views.hours_ahead'),
(r'~now m nus(\d{1, 2})hours/$', 'nysite.views.hours_behind),

(r'~now in_chicago/$', 'nysite.views.now_ in_chicago'),
(r'~now in_london/$', 'nysite.views.now_ in_|london'),
)
(Note the quotes around the view names. We’'re using ' nysite. views. current_dateti ne' — with quotes —

instead of nysite.views. current_datetine.)

Using this technique, it’s no longer necessary to import the view functions; Django automatically imports the
appropriate view function the first time it’'s needed, according to the string describing the name and path of the
view function.

A further shortcut you can take when using the string technique is to factor out a common “view prefix.” In our
URLconf example, each of the view strings starts with ' nysi te. vi ews' , which is redundant to type. We can
factor out that common prefix and pass it as the first argument to patterns(), like this:

from dj ango. conf.urls.defaults inport *

url patterns = patterns(' nysite.views',
(r'~now $', 'current_datetine'),
(r'~“now plus(\d{1, 2})hours/$', 'hours_ahead'),
(r'~*now m nus(\d{1, 2})hours/$', 'hours_behind),
(r'~now in_chicago/$', 'now_in_chicago'),
(r'~now in_london/$', 'now_.in_|london'),

Note that you don’t put a trailing dot (".") in the prefix, nor do you put a leading dot in the view strings.
Django puts those in automatically.

With these two approaches in mind, which is better? It really depends on your personal coding style and needs.
Advantages of the string approach are as follows:

= It's more compact, because it doesn’t require you to import the view functions.

= It results in more readable and manageable URLconfs if your view functions are spread across several
different Python modules.

Advantages of the function object approach are as follows:

= It allows for easy “wrapping” of view functions. See the section “Wrapping View Functions” later in this
chapter.

= It's more “Pythonic” — that is, it's more in line with Python traditions, such as passing functions as
objects.

Both approaches are valid, and you can even mix them within the same URLconf. The choice is yours.

Using Multiple View Prefixes

In practice, if you use the string technique, you’ll probably end up mixing views to the point where the views in
your URLconf won’t have a common prefix. However, you can still take advantage of the view prefix shortcut
to remove duplication. Just add multiple patterns() objects together, like this:

Oold:

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs

from dj ango. conf.urls.defaults inport *

url patterns = patterns('’',
(r'~?$", 'mysite.views. archive_index'),
(r'~\d{4})/([a-z]1{3})/%", '"nysite.views.archive nonth'),
(r'"~tag/ (\w+)/$', '"weblog.views.tag'),

New:

from dj ango. conf.urls.defaults inport *

url patterns = patterns(' nysite.views',
(r'~ 2%, "archive_index'),
(r'~(\d{4})/([a-2]{3})/%$', 'archive_nonth'),

url patterns += patterns(' webl og. vi ews',
(r'~tag/ (\w+)/$', '"tag'),

All the framework cares about is that there’s a module-level variable called ur | patt er ns. This variable can be
constructed dynamically, as we do in this example.

Special-Casing URLs in Debug Mode

Speaking of constructing ur | patt er ns dynamically, you might want to take advantage of this technique to
alter your URLconf’s behavior while in Django’s debug mode. To do this, just check the value of the DEBUG
setting at runtime, like so:

from dj ango. conf.urls.defaults inport*
from dj ango. conf inport settings

url patterns = patterns('’',
(r'~$', 'nysite.views. honepage'),
(r'~\d{4})/([a-z]1{3})/9%", '"nysite.views.archive nonth'),

if settings. DEBUG
url patterns += patterns('",
(r' ~debugi nfo$', 'nysite.views.debug'),

In this example, the URL / debugi nf o/ will only be available if your DEBUG setting is set to True.

Using Named Groups

In all of our URLconf examples so far, we’'ve used simple, non-named regular expression groups — that is, we
put parentheses around parts of the URL we wanted to capture, and Django passes that captured text to the
view function as a positional argument. In more advanced usage, it’s possible to use named regular expression
groups to capture URL bits and pass them as keyword arguments to a view.

Keyword Arguments vs. Positional Arguments

A Python function can be called using keyword arguments or positional arguments — and, in some
cases, both at the same time. In a keyword argument call, you specify the names of the

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs

arguments along with the values you’re passing. In a positional argument call, you simply pass
the arguments without explicitly specifying which argument matches which value; the association
is implicit in the arguments’ order.

For example, consider this simple function:

def sell(item price, quantity):
print "Selling % unit(s) of % at %" % (quantity, item price)

To call it with positional arguments, you specify the arguments in the order in which they’re listed
in the function definition:

sel | (' Socks', '$2.50', 6)

To call it with keyword arguments, you specify the names of the arguments along with the values.
The following statements are equivalent:

sell (item=" Socks', price="$2.50", quantity=6)
sel |l (item" Socks', quantity=6, price="$2.50")
sel | (price="$2.50", item Socks', quantity=6)
sel | (price="$2.50", quantity=6, item=" Socks')
sell (quantity=6, item Socks', price="$2.50")
sel |l (quantity=6, price="$2.50', iten¥ Socks')

Finally, you can mix keyword and positional arguments, as long as all positional arguments are
listed before keyword arguments. The following statements are equivalent to the previous
examples:

sel |l (' Socks', '$2.50', quantity=6)
sel | (' Socks', price="$2.50', quantity=6)
sel | (' Socks', quantity=6, price='$2.50")

In Python regular expressions, the syntax for named regular expression groups is (?P<nane>pattern) , where
nane is the name of the group and pattern is some pattern to match.

Here’s an example URLconf that uses non-named groups:

from dj ango. conf.urls.defaults inport *
fromnysite inmport views

url patterns = patterns('’',
(r'~articles/(\d{4})/$', views.year_archive),
(r'~articles/(\d{4})/(\d{2})/$', views.nonth_archive),
Here’s the same URLconf, rewritten to use named groups:

from dj ango. conf.urls.defaults inport *
from nysite inport views

url patterns = patterns('’',
(r'Marticles/(?P<year>\d{4})/$', views.year_ archive),
(r'Marticles/(?P<year>\d{4})/(?P<nmonth>\d{2})/$', views.nonth archive),

This accomplishes exactly the same thing as the previous example, with one subtle difference: the captured

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs
values are passed to view functions as keyword arguments rather than positional arguments.

For example, with non-named groups, a request to / arti cl es/ 2006/ 03/ would result in a function call
equivalent to this:

nont h_ar chi ve(request, '2006', '03")
With named groups, though, the same request would result in this function call:
nont h_ar chi ve(request, year='2006', nonth="03")

In practice, using named groups makes your URLconfs slightly more explicit and less prone to argument-order
bugs — and you can reorder the arguments in your views’ function definitions. Following the preceding
example, if we wanted to change the URLs to include the month before the year, and we were using non-
named groups, we’'d have to remember to change the order of arguments in the nont h_ar chi ve view. If we
were using named groups, changing the order of the captured parameters in the URL would have no effect on
the view.

Of course, the benefits of named groups come at the cost of brevity; some developers find the named-group
syntax ugly and too verbose. Still, another advantage of named groups is readability, especially by those who
aren’t intimately familiar with regular expressions or your particular Django application. It's easier to see
what’s happening, at a glance, in a URLconf that uses named groups.

Understanding the Matching/Grouping Algorithm

A caveat with using named groups in a URLconf is that a single URLconf pattern cannot contain both named
and non-named groups. If you do this, Django won’t throw any errors, but you’ll probably find that your URLs
aren’t matching as you expect. Specifically, here’s the algorithm the URLconf parser follows, with respect to
named groups vs. non-named groups in a regular expression:

= If there are any named arguments, it will use those, ignoring non-named arguments.
= Otherwise, it will pass all non-named arguments as positional arguments.

= In both cases, it will pass any extra options as keyword arguments. See the next section for more
information.

Passing Extra Options to View Functions

Sometimes you’ll find yourself writing view functions that are quite similar, with only a few small differences.
For example, say you have two views whose contents are identical except for the template they use:

urls.py

from dj ango. conf.urls.defaults inport *
from nysite inport views

url patterns = patterns('’',
(r'~foo/$', views.foo_view,
(r'~bar/$', views.bar_view,

Vi ews. py

from dj ango. shortcuts inport render_to_response
from nysite.nodels inport M/Model

def foo_view(request):
mlist = M/Model . obj ects.filter(is_new=True)

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs
return render _to response('tenplatel.html', {"mlist': mlist})
def bar_view(request):

mlist = M/Model . obj ects.filter(is_new=True)
return render _to _response('tenplate2. htm', {"mlist': mlist})

We’'re repeating ourselves in this code, and that’s inelegant. At first, you may think to remove the redundancy
by using the same view for both URLSs, putting parentheses around the URL to capture it, and checking the URL

within the view to determine the template, like so:

urls. py

from dj ango. conf.urls.defaults inport *
fromnysite inmport views

url patterns = patterns('’',
(r'~(foo)/$', views.foobar view),
(r'~(bar)/$', views.foobar view,

Vi ews. py

from dj ango. shortcuts inport render_to_response
from nysite.nodel s inport M/Model

def foobar_view(request, url):
mlist = M/Model . obj ects.filter(is_new=True)

if url == "foo":
tenpl ate nane = 'tenplatel. htm'
elif url == "bar':
tenpl ate _nane = 'tenplate2. htm"
return render _to_response(tenplate nane, {'mlist': mlist})

The problem with that solution, though, is that it couples your URLs to your code. If you decide to rename
/fool to/fooey/, you'll have to remember to change the view code.

The elegant solution involves an optional URLconf parameter. Each pattern in a URLconf may include a third
item: a dictionary of keyword arguments to pass to the view function.

With this in mind, we can rewrite our ongoing example like this:

urls.py

from dj ango. conf.urls.defaults inport *
from nysite inport views

url patterns = patterns('’',
(r'~foo/$', views.foobar view, {'tenplate nane': 'tenplatel.htm'}),
(r'~bar/$', views.foobar_view, {'tenplate_nanme': 'tenplate2. htm'}),

Vi ews. py

from dj ango. shortcuts inport render_to_response
from nysite.nodels inport M/Model

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs

def foobar_view(request, tenplate nane):
mlist = M/Model . obj ects.filter(is_new=True)
return render _to _response(tenplate nane, {'mlist': mlist})

As you can see, the URLconf in this example specifies t enpl at e_nane in the URLconf. The view function treats
it as just another parameter.

This extra URLconf options technique is a nice way of sending additional information to your view functions
with minimal fuss. As such, it's used by a couple of Django’s bundled applications, most notably its generic
views system, which we cover in Chapter 9.

The following sections contain a couple of ideas on how you can use the extra URLconf options technique in
your own projects.

Faking Captured URLconf Values

Say you have a set of views that match a pattern, along with another URL that doesn’t fit the pattern but
whose view logic is the same. In this case, you can “fake” the capturing of URL values by using extra URLconf
options to handle that extra URL with the same view.

For example, you might have an application that displays some data for a particular day, with URLs such as
these:

[mydat a/ j an/ 01/
[mydat a/ j an/ 02/
[mydat a/ j an/ 03/
#o...

[mydat a/ dec/ 30/
[mydat a/ dec/ 31/

This is simple enough to deal with — you can capture those in a URLconf like this (using named group syntax):

url patterns = patterns('’',
(r' ~nydat a/ (?P<nont h>\ W 3})/ (?P<day>\d\d)/$', views.nmy view),

And the view function signature would look like this:

def ny_view(request, nonth, day):
#o.o...

This approach is straightforward — it’s nothing you haven’t seen before. The trick comes in when you want to
add another URL that uses ny_vi ew but whose URL doesn’t include a nont h and/or day.

For example, you might want to add another URL, / nydat a/ bi rt hday/ , which would be equivalent to
/ mydat a/ j an/ 06/ . You can take advantage of extra URLconf options like so:

url patterns = patterns('’',
(r'*nydata/birthday/$' , views.my view, {'nonth': 'jan', 'day': '06'}),
(r' ~nydat a/ (?P<nont h>\w{ 3})/ (?P<day>\d\d)/$', views.ny view,

The cool thing here is that you don’t have to change your view function at all. The view function only cares
that it gets nont h and day parameters — it doesn’t matter whether they come from the URL capturing itself or
extra parameters.

Making a View Generic

It's good programming practice to “factor out” commonalities in code. For example, with these two Python

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs

functions:

def say_hel | o(person_nane):
print '"Hello, %' % person_nane

def say_goodbye(person_nane):
print ' Goodbye, %' % person_nane

we can factor out the greeting to make it a parameter:

def greet(person_nane, greeting):
print '%, %' % (greeting, person_nane)

You can apply this same philosophy to your Django views by using extra URLconf parameters.

With this in mind, you can start making higher-level abstractions of your views. Instead of thinking to yourself,
“This view displays a list of Event objects,” and “That view displays a list of Bl ogEnt ry objects,” realize they’re
both specific cases of “A view that displays a list of objects, where the type of object is variable.”

Take this code, for example:
urls. py

from dj ango. conf.urls.defaults inport *
fromnysite inmport views

url patterns = patterns('’',
(r'"events/$', views.event list),
(r'"blog/entries/$, views.entry list),

vi ews. py

from dj ango. shortcuts inport render_to_response
from nysite.nodels inport Event, BlogEntry

def event_list(request):
obj list = Event.objects.all ()
return render_to_response(' nysite/event_list.htm', {"event_list': obj_list})

def entry list(request):
obj _list = BlogEntry.objects.all()
return render _to_response(' mysite/blogentry list.html', {"entry list': obj list})

The two views do essentially the same thing: they display a list of objects. So let’s factor out the type of object
they’re displaying:

urls. py

from dj ango. conf.urls.defaults inport *
fromnysite inport nodels, views

url patterns = patterns('’',

(r'"events/$', views.object list, {'nodel': npdels.Event}),
(r'"blog/entries/$', views.object list, {'nodel': nodels.BlogEntry}),

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs

Vi ews. py
from dj ango. shortcuts inport render_to_response

def object I|ist(request, nodel):
obj list = nodel.objects.all()
tenplate _nane = 'nysite/% list.htm' % nodel.__name__ .l ower()
return render _to_response(tenplate nane, {'object list': obj list})

With those small changes, we suddenly have a reusable, model-agnostic view! From now on, anytime we need
a view that lists a set of objects, we can simply reuse this obj ect _| i st view rather than writing view code.
Here are a couple of notes about what we did:

= We're passing the model classes directly, as the nodel parameter. The dictionary of extra URLconf options
can pass any type of Python object — not just strings.

= The nodel . obj ects. all () line is an example of duck typing: “If it walks like a duck and talks like a duck,
we can treat it like a duck.” Note the code doesn’t know what type of object nodel is; the only
requirement is that nodel have an obj ect s attribute, which in turn has an al | () method.

= We're using nodel . __nane__. | ower () in determining the template name. Every Python class has a
__nane__ attribute that returns the class name. This feature is useful at times like this, when we don’t
know the type of class until runtime. For example, the Bl ogEnt ry class’s __nane__ is the string
"Bl ogEntry' .

= In a slight difference between this example and the previous example, we're passing the generic variable
name obj ect _| i st to the template. We could easily change this variable name to be bl ogentry_I|i st or
event |ist, but we've left that as an exercise for the reader.

Because database-driven Web sites have several common patterns, Django comes with a set of “generic views”
that use this exact technique to save you time. We cover Django’s built-in generic views in the next chapter.

Giving a View Configuration Options

If you’'re distributing a Django application, chances are that your users will want some degree of configuration.
In this case, it’s a good idea to add hooks to your views for any configuration options you think people may
want to change. You can use extra URLconf parameters for this purpose.

A common bit of an application to make configurable is the template name:

def my_view(request, tenplate nane):
var = do_sonet hi ng()
return render _to_response(tenplate nane, {'var': var})

Understanding Precedence of Captured Values vs. Extra Options

When there’s a conflict, extra URLconf parameters get precedence over captured parameters. In other words,
if your URLconf captures a named-group variable and an extra URLconf parameter includes a variable with the
same name, the extra URLconf parameter value will be used.

For example, consider this URLconf:
from dj ango. conf.urls.defaults inport *
url patterns = patterns('',
(r'~*nmydatal/ (?P<id>\d+)/$', views.nmy_view, {'id: 3}),

Here, both the regular expression and the extra dictionary include an i d. The hard-coded i d gets precedence.

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs

That means any request (e.g., / nydat a/ 2/ or / nydat a/ 432432/) will be treated as if i d is set to 3, regardless
of the value captured in the URL.

Astute readers will note that in this case, it’'s a waste of time and typing to capture the i d in the regular
expression, because its value will always be overridden by the dictionary’s value. That's correct; we bring this
up only to help you avoid making the mistake.

Using Default View Arguments

Another convenient trick is to specify default parameters for a view’s arguments. This tells the view which
value to use for a parameter by default if none is specified.

Here’s an example:
urls. py
from dj ango. conf.urls.defaults inport *

url patterns = patterns('’',
(r'~blog/$', views.page),
(r' ~bl og/ page(?P<nun®\d+)/$', views.page),

vi ews. py

def page(request, nun¥"1"):
Qutput the appropriate page of blog entries, according to num
#o...

Here, both URL patterns point to the same view — vi ews. page — but the first pattern doesn’t capture anything
from the URL. If the first pattern matches, the page() function will use its default argument for num " 1" . If
the second pattern matches, page() will use whatever numvalue was captured by the regular expression.

It’s common to use this technique in conjunction with configuration options, as explained earlier. This example
makes a slight improvement to the example in the “Giving a View Configuration Options” section by providing
a default value for t enpl at e_nane:

def ny_view(request, tenplate nane='nysite/ny_view htm"):
var = do_sonet hi ng()
return render _to _response(tenplate nane, {'var': var})

Special-Casing Views

Sometimes you'll have a pattern in your URLconf that handles a large set of URLs, but you’ll need to special-
case one of them. In this case, take advantage of the linear way a URLconf is processed and put the special
case first.

For example, the “add an object” pages in Django’s admin site are represented by this URLconf line:

url patterns = patterns('’',
...
("MI[NMIBI([NM]+)/add/ $', 'django.contrib.adm n.views. nai n. add_st age'),
...

This matches URLs such as / nmybl og/ entri es/add/ and / aut h/ gr oups/ add/ . However, the “add” page for a
user object (/ aut h/ user/ add/) is a special case — it doesn’t display all of the form fields, it displays two

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs

password fields, and so forth. We could solve this problem by special-casing in the view, like so:

def add_stage(request, app_l abel, nodel nane):
if app_label == "auth' and nodel nanme == 'user':
do speci al - case code
el se:
do normal code

but that’s inelegant for a reason we’ve touched on multiple times in this chapter: it puts URL logic in the view.
As a more elegant solution, we can take advantage of the fact that URLconfs are processed in order from top

to bottom:

url patterns = patterns('’',

#o...
(' Mauth/user/add/$', 'django.contrib.adm n.views.auth.user_add_stage'),
("~M[NMIH)I([N]+)/add/$', 'django.contrib.adm n.views. main.add_stage'),
#o...

With this in place, a request to / aut h/ user/ add/ will be handled by the user _add_st age view. Although that
URL matches the second pattern, it matches the top one first. (This is short-circuit logic.)

Capturing Text in URLs

Each captured argument is sent to the view as a plain Python string, regardless of what sort of match the
regular expression makes. For example, in this URLconf line:

(r'~articles/(?P<year>\d{4})/$', views.year_archive),

the year argument to vi ews. year _ar chi ve() will be a string, not an integer, even though \ d{ 4} will only
match integer strings.

This is important to keep in mind when you’re writing view code. Many built-in Python functions are fussy (and
rightfully so) about accepting only objects of a certain type. A common error is to attempt to create a

dat et i ne. dat e object with string values instead of integer values:

>>> jnport datetinme

>>> datetine.date(' 1993, '7', '9')
Traceback (nost recent call |ast):

TypeError: an integer is required

>>> datetinme. date(1993, 7, 9)
datetine.date(1993, 7, 9)

Translated to a URLconf and view, the error looks like this:
urls. py

from dj ango. conf.urls.defaults inport *

url patterns = patterns('',

(r'~articles/(\d{4})/(\d{2})/(\d{2})/$', views.day_archive),

Vi ews. py

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs
i mport datetine
def day_archive(request, year, nonth, day)

The followi ng statenent raises a TypeError!
date = datetimnme.date(year, nonth, day)

Instead, day_ar chi ve() can be written correctly like this:

def day_archive(request, year, nonth, day)
date = datetine.date(int(year), int(nonth), int(day))

Note that i nt () itself raises a Val ueError when you pass it a string that is not composed solely of digits, but
we’'re avoiding that error in this case because the regular expression in our URLconf has ensured that only
strings containing digits are passed to the view function.

Determining What the URLconf Searches Against

When a request comes in, Django tries to match the URLconf patterns against the requested URL, as a normal
Python string (not as a Unicode string). This does not include GET or POST parameters, or the domain name. It
also does not include the leading slash, because every URL has a leading slash.

For example, in a request to http://ww. exanpl e. conl nyapp/ , Django will try to match nyapp/ . In a request
to http://ww. exanpl e. conf nyapp/ ?page=3, Django will try to match nyapp/ .

The request method (e.g., POST, GET, HEAD) is not taken into account when traversing the URLconf. In other
words, all request methods will be routed to the same function for the same URL. It's the responsibility of a
view function to perform branching based on request method.

Including Other URLconfs

If you intend your code to be used on multiple Django-based sites, you should consider arranging your
URLconfs in such a way that allows for “including.”

At any point, your URLconf can “include” other URLconf modules. This essentially “roots” a set of URLs below
other ones. For example, this URLconf includes other URLconfs:

from dj ango. conf.urls.defaults inport *

url patterns = patterns('’',

(r*~*weblog/', include('nmysite.blog.urls")),
(r'~photos/', include('nysite.photos.urls')),
(r'Mabout/$', 'nysite.views.about'),

There’s an important gotcha here: the regular expressions in this example that point to an i ncl ude() do not
have a $ (end-of-string match character) but do include a trailing slash. Whenever Django encounters

i ncl ude(), it chops off whatever part of the URL matched up to that point and sends the remaining string to
the included URLconf for further processing.

Continuing this example, here’s the URLconf nysite. bl og. urls:
from dj ango. conf.urls.defaults inport *
url patterns = patterns('’',

(r'~M(\d\d\d\d)/$', 'nysite.blog.views.year _detail'),
(r'~(\d\d\d\d)/(\d\d)/$', 'nysite.blog.views.nonth detail'),

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs

With these two URLconfs, here’s how a few sample requests would be handled:

= /webl og/ 2007/ : In the first URLconf, the pattern r' “webl og/' matches. Because it is an i ncl ude(),
Django strips all the matching text, which is ' webl og/ "' in this case. The remaining part of the URL is
2007/ , which matches the first line in the nysi te. bl og. url s URLconf.

= /webl og//2007/ : In the first URLconf, the pattern r' “webl og/' matches. Because it is an i ncl ude(),
Django strips all the matching text, which is ' webl og/"' in this case. The remaining part of the URL is
/ 2007/ (with a leading slash), which does not match any of the lines in the nysite. bl og. url s URLconf.

= /about/ : This matches the view nysite. vi ews. about in the first URLconf, demonstrating that you can
mix i ncl ude() patterns with non-i ncl ude() patterns.

How Captured Parameters Work with include()

An included URLconf receives any captured parameters from parent URLconfs, for example:

root urls.py
from dj ango. conf.urls.defaults inport *

url patterns = patterns('’',
(r*~(?P<username>\w+t)/ bl og/*, include('foo.urls.blog)),

fool url s/ bl og. py
from dj ango. conf.urls.defaults inport *

url patterns = patterns('’',
(r'"$', 'foo.views.blog_ index'),
(r'~archivel/$', 'foo.views.blog archive'),

In this example, the captured user nane variable is passed to the included URLconf and, hence, to every view
function within that URLconf.

Note that the captured parameters will always be passed to every line in the included URLconf, regardless of
whether the line’s view actually accepts those parameters as valid. For this reason, this technique is useful only
if you’re certain that every view in the included URLconf accepts the parameters you’re passing.

How Extra URLconf Options Work with include()

Similarly, you can pass extra URLconf options to i ncl ude(), just as you can pass extra URLconf options to a
normal view — as a dictionary. When you do this, each line in the included URLconf will be passed the extra
options.

For example, the following two URLconf sets are functionally identical.

Set one:
urls. py
from dj ango. conf.urls.defaults inport *

url patterns = patterns('',
(r'~blog/", include('inner'), {'blogid : 3}),

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

Chapter 8: Advanced Views and URLconfs

i nner. py
from dj ango. conf.urls.defaults inport *

url patterns = patterns('’',

(r'Marchivel/$', 'nysite.views.archive'),
(r'~about/$', 'nysite.views.about'),
(r'~rss/$', "nysite.views.rss'),

)

Set two:

urls. py

from dj ango. conf.urls.defaults inport *

url patterns = patterns('’',
(r'”~blog/', include('inner')),

i nner. py
from dj ango. conf.urls.defaults inport *

url patterns = patterns('',
(r'Marchive/$', 'nysite.views.archive', {'blogid : 3}),
(r'Mabout/$', 'nysite.views.about', {'blogid: 3}),
(r'~rss/$', "nysite.views.rss', {'blogid: 3}),

As is the case with captured parameters (explained in the previous section), extra options will always be
passed to every line in the included URLconf, regardless of whether the line’s view actually accepts those
options as valid. For this reason, this technique is useful only if you’re certain that every view in the included
URLconf accepts the extra options you're passing.

What’s Next?

One of Django’s main goals is to reduce the amount of code developers need to write, and in this chapter we
suggested how to cut down the code of your views and URLconfs.

The next logical step in code elimination is removing the need to write views entirely. That’s the topic of the
next chapter.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter08/[2009.01.07. 10:40:02]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 9: Generic Views

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 9: Generic Views

Here again is a recurring theme of this book: at its worst, Web development is boring and monotonous. So far,
we’ve covered how Django tries to take away some of that monotony at the model and template layers, but
Web developers also experience this boredom at the view level.

Django’s generic views were developed to ease that pain. They take certain common idioms and patterns
found in view development and abstract them so that you can quickly write common views of data without
having to write too much code. In fact, nearly every view example in the preceding chapters could be rewritten
with the help of generic views.

Chapter 8 touched briefly on how you’d go about making a view “generic.” To review, we can recognize certain
common tasks, like displaying a list of objects, and write code that displays a list of any object. Then the model
in question can be passed as an extra argument to the URLconf.

Django ships with generic views to do the following:

= Perform common “simple” tasks: redirect to a different page and render a given template.

= Display list and detail pages for a single object. The event |ist and entry_|i st views from Chapter 8
are examples of list views. A single event page is an example of what we call a “detail” view.

= Present date-based objects in year/month/day archive pages, associated detail, and “latest” pages. The
Django Weblog’s (http://www.djangoproject.com/weblog/) year, month, and day archives are built with
these, as would be a typical newspaper’s archives.

= Allow users to create, update, and delete objects — with or without authorization.

Taken together, these views provide easy interfaces to perform the most common tasks developers encounter.

Using Generic Views

All of these views are used by creating configuration dictionaries in your URLconf files and passing those
dictionaries as the third member of the URLconf tuple for a given pattern.

For example, here’s a simple URLconf you could use to present a static “about” page:

from dj ango. conf.urls.defaults inport *
from dj ango. vi ews. generic.sinple inport direct to tenplate

url patterns = patterns('’',
('"about/$', direct to tenplate, {
"tenmplate': 'about.htnl’
b

Though this might seem a bit “magical” at first glance — look, a view with no code! —, it's actually exactly the
same as the examples in Chapter 8: the direct_to_t enpl at e view simply grabs information from the extra-
parameters dictionary and uses that information when rendering the view.

Because this generic view — and all the others — is a regular view functions like any other, we can reuse it
inside our own views. As an example, let’s extend our “about” example to map URLs of the form
/ about / <what ever >/ to statically rendered about/ <what ever >. ht Ml . We’ll do this by first modifying the

http://www.djangobook.com/en/1.0/chapter09/[2009.01.07. 10:40:14]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257
http://www.djangoproject.com/weblog/

Chapter 9: Generic Views

URLconf to point to a view function:

from dj ango. conf.urls.defaults inport *
from dj ango. vi ews. generic.sinple inport direct to tenplate
from nysite. books. views inport about pages

url patterns = patterns('’',
('"about/$', direct to tenplate, {
"tenplate': '"about.htnl'

1)l
(" "about/(w+)/$', about_pages),

Next, we’ll write the about _pages view:

from dj ango. http inport Http404
from dj ango. tenpl ate inport Tenpl at eDoesNot Exi st
from dj ango. vi ews. generic.sinple inport direct to tenplate

def about pages(request, page):
try:
return direct _to_tenpl ate(request, tenplate="about/%.htm" % page)
except Tenpl at eDoesNot EXi st :
rai se Htpd404()

Here we’re treating di rect _t o_t enpl at e like any other function. Since it returns an Ht t pResponse, we can
simply return it as-is. The only slightly tricky business here is dealing with missing templates. We don’t want a
nonexistent template to cause a server error, so we catch Tenpl at eDoesNot Exi st exceptions and return 404
errors instead.

Is There a Security Vulnerability Here?

Sharp-eyed readers may have noticed a possible security hole: we’re constructing the template
name using interpolated content from the browser (t enpl at e="about/ %. html " % page). At first
glance, this looks like a classic directory traversal vulnerability (discussed in detail in Chapter 19).
But is it really?

Not exactly. Yes, a maliciously crafted value of page could cause directory traversal, but although
page is taken from the request URL, not every value will be accepted. They key is in the URLconf:
we're using the regular expression \ w+ to match the page part of the URL, and \ w only accepts
letters and numbers. Thus, any malicious characters (dots and slashes, here) will be rejected by
the URL resolver before they reach the view itself.

Generic Views of Objects

The direct _to_tenpl at e certainly is useful, but Django’s generic views really shine when it comes to
presenting views on your database content. Because it’'s such a common task, Django comes with a handful of
built-in generic views that make generating list and detail views of objects incredibly easy.

Let’s take a look at one of these generic views: the “object list” view. We’ll be using this Publ i sher object
from Chapter 5:

cl ass Publ i sher (nodel s. Mbdel) :
nane = nodel s. Char Fi el d(max| engt h=30)
address = nodel s. Char Fi el d(max| engt h=50)
city = nodel s. Char Fi el d(max| engt h=60)

http://www.djangobook.com/en/1.0/chapter09/[2009.01.07. 10:40:14]

Chapter 9: Generic Views

state_provi nce = nodel s. Char Fi el d(max| engt h=30)
country = nodel s. Char Fi el d(max| engt h=50)
website = nodel s. URLFi el d()

def _ str_ (self):
return sel f.nane

cl ass Meta:
ordering = ["-nane"]

cl ass Adm n:
pass

To build a list page of all books, we’'d use a URLconf along these lines:

from dj ango. conf.urls.defaults inport *
from dj ango. vi ews. generic inmport |ist_detai
from nysite. books. nodel s inport Publisher

publ i sher _info = {
"queryset" : Publisher.objects.all(),

url patterns = patterns('’',
(r'"publishers/$' , list _detail.object list, publisher_info)

That’s all the Python code we need to write. We still need to write a template, however. We could explicitly tell
the obj ect _|i st view which template to use by including a t enpl at e_nane key in the extra arguments
dictionary, but in the absence of an explicit template Django will infer one from the object’s name. In this case,
the inferred template will be "books/ publisher_list.htm" — the “books” part comes from the name of the
app that defines the model, while the “publisher” bit is just the lowercased version of the model’s name.

This template will be rendered against a context containing a variable called obj ect _| i st that contains all the
book objects. A very simple template might look like the following:

{% extends "base.htm " %

{% bl ock content %
<h2>Publ i sher s</ h2>

{% for publisher in object list %
{{ publisher.nane }}</Ii>
{% endfor %
</ ul >
{% endbl ock %

That’s really all there is to it. All the cool features of generic views come from changing the “info” dictionary
passed to the generic view. Appendix D documents all the generic views and all their options in detail; the rest
of this chapter will consider some of the common ways you might customize and extend generic views.

Extending Generic Views

There’s no question that using generic views can speed up development substantially. In most projects,
however, there comes a moment when the generic views no longer suffice. Indeed, the most common question
asked by new Django developers is how to make generic views handle a wider array of situations.

http://www.djangobook.com/en/1.0/chapter09/[2009.01.07. 10:40:14]

Chapter 9: Generic Views

Luckily, in nearly every one of these cases, there are ways to simply extend generic views to handle a larger
array of use cases. These situations usually fall into a handful of patterns dealt with in the sections that follow.

Making “Friendly”” Template Contexts

You might have noticed that sample publisher list template stores all the books in a variable named

obj ect _I i st . While this works just fine, it isn’t all that “friendly” to template authors: they have to “just
know” that they’re dealing with books here. A better name for that variable would be publ i sher _| i st ; that
variable’s content is pretty obvious.

We can change the name of that variable easily with the t enpl at e_obj ect _nanme argument:

publisher _info = {
"queryset" : Publisher.objects.all(),
"tenpl at e_obj ect _nanme" : "publisher",

url patterns = patterns('’',
(r'"publishers/$', list_detail.object list, publisher_info)

Providing a useful t enpl at e_obj ect _nane is always a good idea. Your coworkers who design templates will
thank you.

Adding Extra Context

Often you simply need to present some extra information beyond that provided by the generic view. For
example, think of showing a list of all the other publishers on each publisher detail page. The obj ect _det ai |
generic view provides the publisher to the context, but it seems there’s no way to get a list of all publishers in
that template.

But there is: all generic views take an extra optional parameter, ext ra_cont ext . This is a dictionary of extra
objects that will be added to the template’s context. So, to provide the list of all publishers on the detail detail
view, we’d use an info dict like this:

publisher _info = {

"queryset" : Publisher.objects.all(),
"tenpl at e_obj ect _nanme" : "publisher",
"extra_ context" : {"book list" : Book.objects.all()}

This would populate a {{ book_list }} variable in the template context. This pattern can be used to pass any
information down into the template for the generic view. It's very handy.

However, there’s actually a subtle bug here — can you spot it?

The problem has to do with when the queries in extra_cont ext are evaluated. Because this example puts
Publ i sher. obj ects. all () inthe URLconf, it will be evaluated only once (when the URLconf is first loaded).
Once you add or remove publishers, you'’ll notice that the generic view doesn’t reflect those changes until you
reload the Web server (see “Caching and QuerySets” in Appendix C for more information about when
QuerySets are cached and evaluated).

Note

This problem doesn’t apply to the queryset generic view argument. Since Django knows that
particular QuerySet should never be cached, the generic view takes care of clearing the cache
when each view is rendered.

http://www.djangobook.com/en/1.0/chapter09/[2009.01.07. 10:40:14]

Chapter 9: Generic Views

The solution is to use a callback in ext ra_cont ext instead of a value. Any callable (i.e., a function) that’s
passed to extra_cont ext will be evaluated when the view is rendered (instead of only once). You could do this
with an explicitly defined function:

def get books():
return Book. objects.all ()

publisher _info = {

"queryset" : Publisher.objects.all(),
"tenpl at e_obj ect _name" : "publisher"”,
"extra context" : {"book list" : get_ books}

or you could use a less obvious but shorter version that relies on the fact that Publ i sher. obj ects. al | is itself
a callable:

publ i sher_info = {

"queryset" : Publisher.objects.all(),
"tenpl at e_obj ect _name" : "publisher”,
"extra_context" : {"book list" : Book.objects.all}

Notice the lack of parentheses after Book. obj ect s. al | ; this references the function without actually calling it
(which the generic view will do later).

Viewing Subsets of Objects

Now let’s take a closer look at this quer yset key we’ve been using all along. Most generic views take one of
these quer yset arguments — it’s how the view knows which set of objects to display (see “Selecting Objects”
in Chapter 5 for an introduction to QuerySets, and see Appendix C for the complete details).

To pick a simple example, we might want to order a list of books by publication date, with the most recent
first:

book _info = {

"queryset" : Book.objects.all().order_by("-publication_date"),
}
url patterns = patterns('',
(r'"publishers/$' , list_detail.object_list, publisher_info),
(r'"books/$', list_detail.object |list, book_info),

That’s a pretty simple example, but it illustrates the idea nicely. Of course, you’ll usually want to do more than
just reorder objects. If you want to present a list of books by a particular publisher, you can use the same
technique:

apress_books = {
"queryset": Book.objects.filter(publisher__name="Apress Publishing"),

"tenpl ate_nane" : "books/apress list.htm"

}

url patterns = patterns('’',
(r'"publishers/$' , list_detail.object list, publisher_info),
(r'~books/ apress/$', list_detail.object_|ist, apress_books),

http://www.djangobook.com/en/1.0/chapter09/[2009.01.07. 10:40:14]

Chapter 9: Generic Views

Notice that along with a filtered quer yset , we're also using a custom template name. If we didn’t, the generic
view would use the same template as the “vanilla” object list, which might not be what we want.

Also notice that this isn’t a very elegant way of doing publisher-specific books. If we want to add another
publisher page, we’d need another handful of lines in the URLconf, and more than a few publishers would get
unreasonable. We'll deal with this problem in the next section.

Note

If you get a 404 when requesting / books/ apr ess/, check to ensure you actually have a Publisher
with the name ‘Apress Publishing’. Generic views have an al | ow_enpty parameter for this case.
See Appendix D for more details.

Complex Filtering with Wrapper Functions

Another common need is to filter down the objects given in a list page by some key in the URL. Earlier we
hard-coded the publisher’'s name in the URLconf, but what if we wanted to write a view that displayed all the
books by some arbitrary publisher? We can “wrap” the obj ect | i st generic view to avoid writing a lot of code
by hand. As usual, we’ll start by writing a URLconf:

url patterns = patterns('’',
(r'"publishers/$', list_detail.object list, publisher_info),
(r'~books/ (w+)/$', books_by_publisher),

Next, we’ll write the books_by_publ i sher view itself:

from dj ango. http inport Http404
from dj ango. vi ews. generic inport |ist_detail
from nysite. books. nodel s inport Book, Publisher

def books by publisher(request, nane):

Look up the publisher (and raise a 404 if it can't be found).
try:

publ i sher = Publ i sher. obj ects. get(nanme__i exact =nane)
except Publisher. DoesNot Exi st :

rai se Htp404

Use the object_list view for the heavy lifting.
return list_detail.object |ist(
request,
queryset = Book.objects.filter(publisher=publisher),
tenpl at e_nane = "books/books_by publisher.htm",
tenpl at e_obj ect _name = "books",
extra_context = {"publisher" : publisher}

This works because there’s really nothing special about generic views — they’re just Python functions. Like any
view function, generic views expect a certain set of arguments and return Ht t pResponse objects. Thus, it's
incredibly easy to wrap a small function around a generic view that does additional work before (or after; see
the next section) handing things off to the generic view.

Note

http://www.djangobook.com/en/1.0/chapter09/[2009.01.07. 10:40:14]

Chapter 9: Generic Views

L4 Notice that in the preceding example we passed the current publisher being displayed in the
extra_cont ext . This is usually a good idea in wrappers of this nature; it lets the template know
which “parent” object is currently being browsed.

Performing Extra Work

The last common pattern we’ll look at involves doing some extra work before or after calling the generic view.

Imagine we had a | ast _accessed field on our Aut hor object that we were using to keep track of the last time
anybody looked at that author. The generic obj ect _detai | view, of course, wouldn’t know anything about this
field, but once again we could easily write a custom view to keep that field updated.

First, we’d need to add an author detail bit in the URLconf to point to a custom view:
from nysite. books.views inport author_detai

url patterns = patterns('',
#...
(r' Maut hors/ (?P<aut hor _i d>d+)/$', author_detail),

Then we’d write our wrapper function:

i mport datetine

from nysite. books. nodel s inport Author

from dj ango. vi ews. generic inport |ist _detail
from dj ango. shortcuts inport get_object _or_ 404

def author_detail (request, author_id):
Look up the Author (and raise a 404 if she's not found)
aut hor = get _obj ect _or_404(Aut hor, pk=aut hor _id)

Record the |ast accessed date
aut hor . | ast _accessed = datetine. datetinme. now)
aut hor . save()

Show the detail page

return |ist _detail.object _detail(
request,
queryset = Author.objects.all(),
object _id = author _id,

Note

This code won’t actually work unless you add a | ast _accessed field to your Aut hor model and
create a books/ aut hor _detail . html template.

We can use a similar idiom to alter the response returned by the generic view. If we wanted to provide a
downloadable plain-text version of the list of authors, we could use a view like this:

def author_list_plaintext(request):

response = |list_detail.object |ist(
request,
queryset = Author.objects.all(),

m netype = "text/plain",

http://www.djangobook.com/en/1.0/chapter09/[2009.01.07. 10:40:14]

Chapter 9: Generic Views

tenpl ate_nane = "books/author |ist.txt"
)
response["Content - Di sposition”] = "attachment; fil enane=authors.txt"
return response

This works because the generic views return simple Htt pResponse objects that can be treated like dictionaries
to set HTTP headers. This Cont ent - Di sposi ti on business, by the way, instructs the browser to download and
save the page instead of displaying it in the browser.

What’s Next?

In this chapter we looked at only a couple of the generic views Django ships with, but the general ideas
presented here should apply pretty closely to any generic view. Appendix D covers all the available views in
detail, and it's recommended reading if you want to get the most out of this powerful feature.

In the next chapter we delve deep into the inner workings of Django’s templates, showing all the cool ways
they can be extended. Until now, we’ve treated the template engine as a mostly static tool you can use to
render your content.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter09/[2009.01.07. 10:40:14]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 10: Extending the Template Engine

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 10: Extending the Template Engine

Although most of your interactions with Django’s template language will be in the role of template author, you
may want to customize and extend the template engine — either to make it do something it doesn’t already
do, or to make your job easier in some other way.

This chapter delves deep into the guts of Django’s template system. It covers what you need to know if you
plan to extend the system or if you're just curious about how it works.

If you’re looking to use the Django template system as part of another application (i.e., without the rest of the
framework), make sure to read the “Configuring the Template System in Standalone Mode” section later in the
chapter.

Template Language Review

First, let’'s quickly review a number of terms introduced in Chapter 4:

= A template is a text document, or a normal Python string, that is marked up using the Django template
language. A template can contain block tags and variables.

= A block tag is a symbol within a template that does something. This definition is deliberately vague. For
example, a block tag can produce content, serve as a control structure (an i f statement or f or loop),
grab content from a database, or enable access to other template tags.

Block tags are surrounded by { %and % :

{%if is_|ogged in %
Thanks for [ogging in!
{% el se %
Pl ease | og in.
{% endi f %

= A variable is a symbol within a template that outputs a value.

Variable tags are surrounded by {{ and }}:
My first name is {{ first _name }}. My last name is {{ last_nane }}.

= A context is a name -> value mapping (similar to a Python dictionary) that is passed to a template.

= A template renders a context by replacing the variable “holes” with values from the context and executing
all block tags.

For more details about the basics of these terms, refer back to Chapter 4.

The rest of this chapter discusses ways of extending the template engine. First, though, let’s take a quick look
at a few internals left out of Chapter 4 for simplicity.

RequestContext and Context Processors

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 10: Extending the Template Engine

When rendering a template, you need a context. Usually this is an instance of dj ango. t enpl at e. Cont ext , but
Django also comes with a special subclass, dj ango. t enpl at e. Request Cont ext , that acts slightly differently.
Request Cont ext adds a bunch of variables to your template context by default — things like the Ht t pRequest
object or information about the currently logged-in user.

Use Request Cont ext when you don’t want to have to specify the same set of variables in a series of
templates. For example, consider these four views:

from dj ango. tenpl ate inport |oader, Context

def view 1(request):

...
t = | oader.get _tenplate('tenplatel. htm")
¢ = Context ({
“app': "My app’,
‘user': request.user,
"ip_address': request. VETA[' REMOTE _ADDR],
‘message': 'l amview 1.°
})

return t.render(c)

def view 2(request):

...

t = | oader.get _tenplate('tenplate2. htm")

¢ = Context ({
“app': "My app’,
‘user': request.user,
"ip_address': request.META[' REMOTE ADDR],
‘message': 'l am the second view.'

})

return t.render(c)

def view 3(request):
...
t = |oader.get _tenplate('tenplate3. htm")
¢ = Context ({
‘app': "My app’,
‘user': request.user,
‘i p_address': request. META[' REMOTE_ADDR],
"message': 'l amthe third view'
})

return t.render(c)

def view 4(request):

#o...

t = |l oader.get_tenplate('tenplate4. htm ")

¢ = Context ({
‘app': "My app’,
‘user': request.user,
"ip_address': request.MVETA[' REMOTE_ADDR],
‘"message': 'l amthe fourth view'

})

return t.render(c)

(Note that we're deliberately not using the render _to_r esponse() shortcut in these examples — we're

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

manually loading the templates, constructing the context objects and rendering the templates. We’re “spelling
out” all of the steps for the purpose of clarity.)

Each view passes the same three variables — app, user and i p_address — to its template. Wouldn’t it be nice
if we could remove that redundancy?

Request Cont ext and context processors were created to solve this problem. Context processors let you
specify a number of variables that get set in each context automatically — without you having to specify the
variables in each render _t o_response() call. The catch is that you have to use Request Cont ext instead of
Cont ext when you render a template.

The most low-level way of using context processors is to create some processors and pass them to
Request Cont ext . Here’s how the above example could be written with context processors:

from dj ango. tenpl ate inport | oader, Request Context

def custom proc(request):

"A context processor that provides 'app', 'user' and 'ip_address'."
return {
“app’: "My app’,

‘user': request.user,
"ip_address': request. VETA[' REMOTE_ADDR |

}
def view 1(request):
oo,
t = |oader.get _tenplate('tenplatel. htm")
¢ = RequestContext(request, {'nessage': '|I amview 1.'},

processor s=[cust om proc])
return t.render(c)

def view 2(request):
#o...
t = | oader.get _tenplate('tenplate2. htm")
¢ = Request Context(request, {'nessage': '|I amthe second view'},

processor s=[cust om proc])
return t.render(c)

def view 3(request):
#o...
t = | oader.get _tenplate('tenplate3. htm")
¢ = Request Context(request, {'nessage': '|I amthe third view '},

processor s=[cust om proc])
return t.render(c)

def view 4(request):
#o.o..
t = |oader.get _tenplate('tenplate4. htm ")
¢ = Request Context(request, {'nessage': 'I amthe fourth view '},

processor s=[cust om proc])
return t.render(c)

Let’s step through this code:

= First, we define a function cust om proc. This is a context processor — it takes an Ht t pRequest object and
returns a dictionary of variables to use in the template context. That’s all it does.

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

= We’ve changed the four view functions to use Request Cont ext instead of Cont ext . There are two
differences in how the context is constructed. One, Request Cont ext requires the first argument to be an
Ht t pRequest object — the one that was passed into the view function in the first place (r equest). Two,
Request Cont ext takes an optional processor s argument, which is a list or tuple of context processor
functions to use. Here, we pass in cust om proc, the custom processor we defined above.

= Each view no longer has to include app, user or i p_address in its context construction, because those are
provided by cust om proc.

= Each view still has the flexibility to introduce any custom template variables it might need. In this
example, the nessage template variable is set differently in each view.

In Chapter 4, we introduced the render _t o_response() shortcut, which saves you from having to call

| oader. get _tenpl ate(), then create a Cont ext , then call the render () method on the template. In order to
demonstrate the lower-level workings of context processors, the above examples didn’t use

render _to_response(), . But it’'s possible — and preferable — to use context processors with

render _to_response() . Do this with the cont ext _i nst ance argument, like so:

from dj ango. shortcuts inport render_to_response
from dj ango. tenpl ate i nport Request Cont ext

def custom proc(request):
"A context processor that provides 'app', 'user' and 'ip_address'."
return {
‘app': "My app’,
‘user': request.user,
"ip_address': request.VETA[' REMOTE _ADDR]

def view 1(request):
...
return render _to_response('tenplatel. htm ",
{"message': 'I amview 1.'},
cont ext _i nst ance=Request Cont ext (request, processors=[custom proc]))

def view 2(request):
#o...
return render _to_response('tenplate2. htm ",
{"message': 'I am the second view "'},
cont ext _i nst ance=Request Cont ext (request, processors=[custom proc]))

def view 3(request):
#o...
return render _to_response('tenplate3. htm ',
{"message': '|I amthe third view '},
cont ext _i nst ance=Request Cont ext (request, processors=[custom proc]))

def view 4(request):
#o...
return render _to_response('tenplate4. htm ",
{"message': 'I amthe fourth view '},
cont ext _i nst ance=Request Cont ext (request, processors=[custom proc]))

Here, we’ve trimmed down each view’s template rendering code to a single (wrapped) line.

This is an improvement, but, evaluating the conciseness of this code, we have to admit we’re now almost
overdosing on the other end of the spectrum. We’ve removed redundancy in data (our template variables) at

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

the cost of adding redundancy in code (in the processors call). Using context processors doesn’t save you
much typing if you have to type processors all the time.

For that reason, Django provides support for global context processors. The TEMPLATE_CONTEXT_PROCESSORS
setting designates which context processors should always be applied to Request Cont ext . This removes the
need to specify processors each time you use Request Cont ext .

By default, TEMPLATE_CONTEXT_PROCESSCRS is set to the following:

TEMPLATE_CONTEXT_PROCESSORS = (
' dj ango. core. cont ext _processors. auth',
' dj ango. core. cont ext _processors. debug’,
' dj ango. core. cont ext _processors.i 18n',
' dj ango. core. cont ext _processors. nedi a',

This setting is a tuple of callables that use the same interface as our cust om proc function above — functions
that take a request object as their argument and return a dictionary of items to be merged into the context.
Note that the values in TEMPLATE_CONTEXT_PROCESSORS are specified as strings, which means the processors
are required to be somewhere on your Python path (so you can refer to them from the setting).

Each processor is applied in order. That is, if one processor adds a variable to the context and a second
processor adds a variable with the same name, the second will override the first.

Django provides a number of simple context processors, including the ones that are enabled by default:

django.core.context_processors.auth

If TEMPLATE_CONTEXT_PROCESSORS contains this processor, every Request Cont ext will contain these variables:

= user: Adjango.contrib. auth. nodel s. User instance representing the current logged-in user (or an
AnonynmousUser instance, if the client isn’t logged in).

= nmessages: A list of messages (as strings) for the current logged-in user. Behind the scenes, this variable
calls request . user. get _and_del et e_nmessages() for every request. That method collects the user’s
messages and deletes them from the database.

= perns: An instance of dj ango. core. cont ext _processors. Per M apper , which represents the
permissions the current logged-in user has.

See Chapter 12 for more information on users, permissions, and messages.

django.core.context_processors.debug

This processor pushes debugging information down to the template layer. If TEMPLATE_CONTEXT_PROCESSORS
contains this processor, every Request Cont ext will contain these variables:

= debug: The value of your DEBUG setting (either True or Fal se). You can use this variable in templates to
test whether you're in debug mode.

= sql _queries: Alistof{"sql': ..., "time': ...} dictionaries representing every SQL query that has
happened so far during the request and how long it took. The list is in the order in which the queries were
issued.

Because debugging information is sensitive, this context processor will only add variables to the context if both
of the following conditions are true:

= The DEBUG setting is Tr ue.

= The request came from an IP address in the | NTERNAL_| PS setting.

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

django.core.context_processors.il8n

If this processor is enabled, every Request Cont ext will contain these variables:

= LANGUACES: The value of the LANGUAGES setting.
= LANGUAGE _CODE: request . LANGUAGE _CODE if it exists; otherwise, the value of the LANGUAGE_CODE setting.

Appendix E provides more information about these two settings.

django.core.context_processors.request

If this processor is enabled, every Request Cont ext will contain a variable r equest , which is the current
Ht t pRequest object. Note that this processor is not enabled by default; you have to activate it.

Guidelines for Writing Your Own Context Processors

Here are a few tips for rolling your own:

= Make each context processor responsible for the smallest subset of functionality possible. It's easy to use
multiple processors, so you might as well split functionality into logical pieces for future reuse.

= Keep in mind that any context processor in TEMPLATE_CONTEXT_PROCESSCRS will be available in every
template powered by that settings file, so try to pick variable names that are unlikely to conflict with
variable names your templates might be using independently. As variable names are case-sensitive, it's
not a bad idea to use all caps for variables a processor provides.

= It doesn’t matter where on the filesystem they live, as long as they’re on your Python path so you can
point to them from the TEMPLATE_CONTEXT_PROCESSORS setting. With that said, the convention is to save
them in a file called cont ext _processors. py within your app or project.

Inside Template Loading

Generally, you’ll store templates in files on your filesystem, but you can use custom template loaders to load
templates from other sources.

Django has two ways to load templates:

= dj ango. tenpl ate. | oader. get _tenpl ate(tenpl at e_nane) : get _t enpl at e returns the compiled template
(a Tenpl at e object) for the template with the given name. If the template doesn’t exist, a
Tenpl at eDoesNot Exi st exception will be raised.

= dj ango.tenpl ate. | oader. sel ect _tenpl ate(tenplate_nane_list): sel ect _tenpl ate is just like
get _tenpl at e, except it takes a list of template names. Of the list, it returns the first template that
exists. If none of the templates exist, a Tenpl at eDoesNot Exi st exception will be raised.

As covered in Chapter 4, each of these functions by default uses your TEMPLATE DI RS setting to load
templates. Internally, however, these functions actually delegate to a template loader for the heavy lifting.

Some of loaders are disabled by default, but you can activate them by editing the TEMPLATE_LQOADERS setting.
TEMPLATE_LQADERS should be a tuple of strings, where each string represents a template loader. These
template loaders ship with Django:

» dj ango.tenpl ate.l oaders.fil esystem | oad_tenpl ate_source: This loader loads templates from the
filesystem, according to TEMPLATE_DI RS. It is enabled by default.

= dj ango. tenpl ate. | oaders. app_directories.| oad_tenpl ate_source: This loader loads templates from
Django applications on the filesystem. For each application in | NSTALLED APPS, the loader looks for a
t enpl at es subdirectory. If the directory exists, Django looks for templates there.

This means you can store templates with your individual applications, making it easy to distribute Django
applications with default templates. For example, if | NSTALLED_APPS contains

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

(' nyproject.polls', 'nyproject.nusic'), then get_tenplate(' foo.htm ") will look for templates in
this order:

= /path/to/ nmyproject/polls/tenplates/foo.htm
= /path/to/ nmyproject/music/tenplates/foo.htm

Note that the loader performs an optimization when it is first imported: it caches a list of which
I NSTALLED_APPS packages have a t enpl at es subdirectory.

This loader is enabled by default.

= dj ango. tenpl ate. | oaders. eggs. | oad_t enpl at e_sour ce: This loader is just like app_directori es,
except it loads templates from Python eggs rather than from the filesystem. This loader is disabled by
default; you’ll need to enable it if you're using eggs to distribute your application.

Django uses the template loaders in order according to the TEMPLATE_LQADERS setting. It uses each loader until
a loader finds a match.

Extending the Template System

Now that you understand a bit more about the internals of the template system, let’'s look at how to extend
the system with custom code.

Most template customization comes in the form of custom template tags and/or filters. Although the Django
template language comes with many built-in tags and filters, you’ll probably assemble your own libraries of
tags and filters that fit your own needs. Fortunately, it’'s quite easy to define your own functionality.

Creating a Template Library

Whether you’re writing custom tags or filters, the first thing to do is to create a template library — a small
bit of infrastructure Django can hook into.

Creating a template library is a two-step process:

= First, decide which Django application should house the template library. If you've created an app via
nmanage. py startapp, you can put it in there, or you can create another app solely for the template
library.

Whichever route you take, make sure to add the app to your | NSTALLED APPS setting. We'll explain this
shortly.

= Second, create a t enpl at et ags directory in the appropriate Django application’s package. It should be on
the same level as nodel s. py, vi ews. py, and so forth. For example:

books/
_init__.py
nodel s. py
t enpl at et ags/
Vi ews. py

Create two empty files in the t enpl at et ags directory: an __init__. py file (to indicate to Python that this
is a package containing Python code) and a file that will contain your custom tag/filter definitions. The
name of the latter file is what you’ll use to load the tags later. For example, if your custom tags/filters are
in a file called pol | _extras. py, you'd write the following in a template:

{% | oad poll|l _extras %

The {% | oad % tag looks at your | NSTALLED APPS setting and only allows the loading of template

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

libraries within installed Django applications. This is a security feature; it allows you to host Python code
for many template libraries on a single computer without enabling access to all of them for every Django
installation.

If you write a template library that isn’t tied to any particular models/views, it’s valid and quite normal to have
a Django application package that contains only a t enpl at et ags package. There’s no limit on how many
modules you put in the t enpl at et ags package. Just keep in mind that a {% | oad % statement will load
tags/filters for the given Python module name, not the name of the application.

Once you’'ve created that Python module, you’ll just have to write a bit of Python code, depending on whether
you’re writing filters or tags.

To be a valid tag library, the module must contain a module-level variable named r egi st er that is a
tenpl at e. Li brary instance. This t enpl at e. Li brary instance is the data structure in which all the tags and
filters are registered. So, near the top of your module, insert the following:

from dj ango inport tenplate

regi ster = tenplate.Library()

Note

For a good number of examples, read the source code for Django’s default filters and tags.
They're in dj ango/ tenpl ate/ defaul tfilters. py and dj ango/ t enpl at e/ def aul tt ags. py,
respectively. Some applications in dj ango. contri b also contain template libraries.

Once you’ve created this r egi st er variable, you'll use it to create template filters and tags.

Writing Custom Template Filters

Custom filters are just Python functions that take one or two arguments:

= The value of the variable (input)

= The value of the argument, which can have a default value or be left out altogether

For example, in the filter {{ var|foo:"bar" }}, the filter f oo would be passed the contents of the variable
var and the argument "bar" .

Filter functions should always return something. They shouldn’t raise exceptions, and they should fail silently.
If there’s an error, they should return either the original input or an empty string, whichever makes more
sense.

Here’s an example filter definition:

def cut(value, arg):
"Renoves all values of arg from the given string"
return val ue.replace(arg, '')

And here’s an example of how that filter would be used:
{{ sonevariable|cut:"0" }}
Most filters don’t take arguments. In this case, just leave the argument out of your function:

def lower(value): # Only one argunent.
"Converts a string into all | owercase"
return val ue. | ower ()

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

When you’ve written your filter definition, you need to register it with your Li br ary instance, to make it
available to Django’s template language:

register.filter('cut', cut)
register.filter('lower', |ower)

The Library.filter() method takes two arguments:

= The name of the filter (a string)

= The filter function itself
If you're using Python 2.4 or above, you can useregi ster.filter() as a decorator instead:

@egister.filter(nane="cut"')
def cut(value, arg):
return val ue.replace(arg, '"')

@egister.filter
def | ower (val ue):
return val ue. | ower ()

If you leave off the nane argument, as in the second example, Django will use the function’s name as the filter
name.

Here, then, is a complete template library example, supplying the cut filter:
from dj ango inport tenplate
regi ster = tenplate.Library()

@egister.filter(nanme="cut"')
def cut(value, arg):
return val ue.replace(arg, '')

Writing Custom Template Tags

Tags are more complex than filters, because tags can do nearly anything.

Chapter 4 describes how the template system works in a two-step process: compiling and rendering. To define
a custom template tag, you need to tell Django how to manage both steps when it gets to your tag.

When Django compiles a template, it splits the raw template text into nodes. Each node is an instance of
dj ango. t enpl at e. Node and has a render () method. Thus, a compiled template is simply a list of Node
objects.

When you call render () on a compiled template, the template calls r ender () on each Node in its node list,
with the given context. The results are all concatenated together to form the output of the template. Thus, to
define a custom template tag, you specify how the raw template tag is converted into a Node (the compilation
function) and what the node’s r ender () method does.

In the sections that follow, we cover all the steps in writing a custom tag.

Writing the Compilation Function

For each template tag it encounters, the template parser calls a Python function with the tag contents and the
parser object itself. This function is responsible for returning a Node instance based on the contents of the tag.

For example, let’s write a template tag, {% current _tine % , that displays the current date/time, formatted

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

according to a parameter given in the tag, in strfti me syntax (see
http://ww. dj angoproj ect.com r/ python/strftine/). It's a good idea to decide the tag syntax before
anything else. In our case, let’s say the tag should be used like this:

<p>The tinme is {%current_tinme "% %n% % :9% %" %.</p>

Note

Yes, this template tag is redundant—Django’s default { % now % tag does the same task with
simpler syntax. This template tag is presented here just for example purposes.

The parser for this function should grab the parameter and create a Node object:

from dj ango inport tenplate

def do_current tine(parser, token):

try:
split_contents() knows not to split quoted strings.
tag_nane, format_string = token.split_contents()

except Val ueError:
nsg = '% tag requires a single argunent' % token. contents[0]
rai se tenpl ate. Tenpl at eSynt axErr or (nsg)

return CurrentTi nreNode(format _string[1l:-1])

There’s actually a lot going here:

= parser is the template parser object. We don’t need it in this example.
= token. contents is a string of the raw contents of the tag. In our example, it's
"current _tinme "%r- %n % % : %V %"’ .
= The token.split_contents() method separates the arguments on spaces while keeping quoted strings

together. Avoid using t oken. contents. split() (which just uses Python’s standard string-splitting
semantics). It’s not as robust, as it naively splits on all spaces, including those within quoted strings.

= This function is responsible for raising dj ango. t enpl at e. Tenpl at eSynt axErr or , with helpful messages,
for any syntax error.

= Don’t hard-code the tag’s name in your error messages, because that couples the tag’s name to your
function. t oken. split_contents()[0] will always be the name of your tag—even when the tag has no
arguments.

= The function returns a Current Ti mreNode (which we’ll create shortly) containing everything the node needs
to know about this tag. In this case, it just passes the argument " %/- %m %d % : %M %" . The leading and
trailing quotes from the template tag are removed with format _string[1: - 1] .

= Template tag compilation functions must return a Node subclass; any other return value is an error.

Writing the Template Node

The second step in writing custom tags is to define a Node subclass that has a render () method. Continuing
the preceding example, we need to define Current Ti neNode :

i mport datetine

cl ass Current Ti reNode(t enpl at e. Node) :

def __init_ (self, format_string):
self.format _string = format _string

def render(self, context):

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

now = datetine.datetinme. now)
return now. strftinme(self.format_string)

These two functions (__init__ and render) map directly to the two steps in template processing (compilation
and rendering). Thus, the initialization function only needs to store the format string for later use, and the
render () function does the real work.

Like template filters, these rendering functions should fail silently instead of raising errors. The only time that
template tags are allowed to raise errors is at compilation time.

Registering the Tag

Finally, you need to register the tag with your module’s Li br ary instance. Registering custom tags is very
similar to registering custom filters (as explained above). Just instantiate a t enpl at e. Li brary instance and
call its t ag() method. For example:

register.tag('current _tine', do_current_tine)

The tag() method takes two arguments:

= The name of the template tag (string). If this is left out, the

name of the compilation function will be used.

= The compilation function.

As with filter registration, it is also possible to use regi st er.tag as a decorator in Python 2.4 and above:

@ egi ster.tag(nane="current _tine")
def do_current tine(parser, token):
#o...

@ egister.tag
def shout (parser, token):
#o...

If you leave off the nane argument, as in the second example, Django will use the function’s name as the tag
name.

Setting a Variable in the Context

The previous section’s example simply returned a value. Often it's useful to set template variables instead of
returning values. That way, template authors can just use the variables that your template tags set.

To set a variable in the context, use dictionary assignment on the context object in the r ender () method.
Here’s an updated version of Current Ti neNode that sets a template variable, current _tine, instead of
returning it:

class Current Ti meNode2(tenpl at e. Node) :

def __init_ (self, format_string):
self.format _string = format _string

def render(self, context):
now = datetine. datetinme. now)
context['current_tinme'] = now strftine(self.format_string)

return

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

Note that r ender () returns an empty string. r ender () should always return a string, so if all the template tag
does is set a variable, render () should return an empty string.

Here’s how you’d use this new version of the tag:

{% current _tine2 "%-%w %l 9% :9%V %" %
<p>The time is {{ current_time }}.</p>

But there’s a problem with Current Ti nreNode2: the variable name current _ti ne is hard-coded. This means
you’ll need to make sure your template doesn’t use {{ current_tine }} anywhere else, because
{% current _tinme2 % will blindly overwrite that variable’s value.

A cleaner solution is to make the template tag specify the name of the variable to be set, like so:

{% get _current _tine "%/-%wW %l % :%V %" as ny_current_tinme %
<p>The current time is {{ my_current _tine }}.</p>

To do so, you’ll need to refactor both the compilation function and the Node class, as follows:
import re
class Current Ti neNode3(t enpl at e. Node) :

def _ init_ (self, format_string, var_nane):
self.format _string = format _string
sel f.var _nane = var_nane

def render(self, context):
now = datetine. datetinme. now)
context[sel f.var_nane] = now. strftinme(self.format_string)
return '’

def do_current tinme(parser, token):
This version uses a regular expression to parse tag contents.
try:
Splitting by None == splitting by spaces.
tag_nane, arg = token.contents.split(None, 1)
except Val ueError:
nsg = '% tag requires argunents' % token. contents[O0]
rai se tenpl ate. Tenpl at eSynt axEr r or (nsg)

m= re.search(r'(.*?) as (\w)', arg)

if m
fnt, var_name = m groups()
el se:
nmeg = '% tag had invalid argunents' % tag_nane

rai se tenpl ate. Tenpl at eSynt axEr r or (nsg)
if not (fm[0] == fm[-1] and fnt[O] in (""", """)):
msg = "% tag's argunent should be in quotes" % tag_nane

rai se tenpl ate. Tenpl at eSynt axErr or (nsg)

return CurrentTi meNode3(fmt[1:-1], var_nane)

Now do_current _tine() passes the format string and the variable name to Current Ti neNode3.

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

Parsing Until Another Block Tag

Template tags can work as blocks containing other tags (think {% if %, {% for 9%, etc.). To create a
template tag like this, use par ser. parse() in your compilation function.

Here’s how the standard { % comment % tag is implemented:

def do_comment (parser, token):
nodel i st = parser. parse((' endcomment',))
parser.del ete first_token()
return Coment Node()

cl ass Comment Node(t enpl at e. Node) :
def render(self, context):

return

parser. parse() takes a tuple of names of block tags to parse until. It returns an instance of
dj ango. t enpl at e. NodeLi st, which is a list of all Node objects that the parser encountered before it
encountered any of the tags named in the tuple.

So in the preceding example, nodel i st is a list of all nodes between { % conment % and {% endcomment 9% ,
not counting { % coment % and {% endcomment % themselves.

After parser. parse() is called, the parser hasn't yet “consumed” the {% endcoment % tag, so the code
needs to explicitly call parser. del ete_first_token() to prevent that tag from being processed twice.

Then Comment Node. render () simply returns an empty string. Anything between { % conment % and
{% endconmment % is ignored.

Parsing Until Another Block Tag and Saving Contents

In the previous example, do_comment () discarded everything between {% coment % and
{% endcomment 9% . It's also possible to do something with the code between block tags instead.

For example, here’s a custom template tag, { % upper % , that capitalizes everything between itself and
{% endupper % :

{ % upper %
This will appear in uppercase, {{ your_nane }}.
{% endupper %

As in the previous example, we’ll use par ser. parse() . This time, we pass the resulting nodel i st to Node:

@egister.tag

def do_upper (parser, token):
nodel i st = parser. parse((' endupper’,))
parser.delete first_token()
return Upper Node(nodel i st)

cl ass Upper Node(t enpl at e. Node) :

def __init_ (self, nodelist):
sel f. nodel i st = nodel i st

def render(self, context):

out put = sel f.nodelist.render(context)
return out put. upper ()

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

The only new concept here is sel f. nodel i st. render (context) in Upper Node. render () . This simply calls
render () on each Node in the node list.

For more examples of complex rendering, see the source code for {% if % ,{%for %, {%ifequal %, and
{% i fchanged % . They live in dj ango/ t enpl at e/ def aul tt ags. py.

Shortcut for Simple Tags

Many template tags take a single argument—a string or a template variable reference—and return a string
after doing some processing based solely on the input argument and some external information. For example,
the current _ti me tag we wrote earlier is of this variety. We give it a format string, and it returns the time as

a string.

To ease the creation of these types of tags, Django provides a helper function, si npl e_t ag. This function,
which is a method of dj ango. t enpl at e. Li brary, takes a function that accepts one argument, wraps it in a
render function and the other necessary bits mentioned previously, and registers it with the template system.

Our earlier current _ti nme function could thus be written like this:

def current tinme(format_string):
return datetine.datetinme.now).strftine(format_string)

regi ster.sinple tag(current_tine)
In Python 2.4, the decorator syntax also works:

@egister.sinple_tag
def current tine(token):

A couple of things to notice about the si npl e_t ag helper function are as follows:

= Only the (single) argument is passed into our function.
= Checking for the required number of arguments has already been done by the time our function is called,
so we don’t need to do that.

= The quotes around the argument (if any) have already been stripped away, so we receive a plain string.

Inclusion Tags

Another common template tag is the type that displays some data by rendering another template. For
example, Django’s admin interface uses custom template tags to display the buttons along the bottom of the
“add/change” form pages. Those buttons always look the same, but the link targets change depending on the
object being edited. They’'re a perfect case for using a small template that is filled with details from the current
object.

These sorts of tags are called inclusion tags. Writing inclusion tags is probably best demonstrated by example.
Let’s write a tag that produces a list of choices for a simple multiple-choice Pol | object. We’ll use the tag like

this:
{% show results poll %
The result will be something like this:

First choice
<l i >Second choi ce</I|i>
Third choice

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

</ ul >

First, we define the function that takes the argument and produces a dictionary of data for the result. Notice
that we need to return only a dictionary, not anything more complex. This will be used as the context for the
template fragment:

def show books for_aut hor (aut hor):
books = aut hor. book _set.all ()
return {'books': books}

Next, we create the template used to render the tag’s output. Following our example, the template is very
simple:

{% for book in books %
 {{ book }}

{% endf or %

</ ul >

Finally, we create and register the inclusion tag by calling the i ncl usi on_t ag() method on a Li brary object.

Following our example, if the preceding template is in a file called pol | s/resul t _sni ppet. ht m , we register
the tag like this:

regi ster.inclusion_tag(' books/books for_author.htm ') (show books for_aut hor)
As always, Python 2.4 decorator syntax works as well, so we could have instead written this:

@ egi ster.inclusion_tag(' books/books for_author. htm ")
def show books for_aut hor (show books for_author):

Sometimes, your inclusion tags need access to values from the parent template’s context. To solve this,
Django provides a t akes_cont ext option for inclusion tags. If you specify t akes_cont ext in creating a
template tag, the tag will have no required arguments, and the underlying Python function will have one
argument: the template context as of when the tag was called.

For example, say you're writing an inclusion tag that will always be used in a context that contains hone_| i nk
and hone_titl e variables that point back to the main page. Here’'s what the Python function would look like:

@egister.inclusion_tag('link.htm"', takes_context=True)
def junp_link(context):
return {
"link': context['hone_link'],
"title': context['hone_title'],

= The first parameter to the function must be called cont ext .

The template | i nk. ht M might contain the following:
Junp directly to {{ title }}.

Then, anytime you want to use that custom tag, load its library and call it without any arguments, like so:

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

{% junp_link %

Writing Custom Template Loaders

Django’s built-in template loaders (described in the “Inside Template Loading” section above) will usually cover
all your template-loading needs, but it’s pretty easy to write your own if you need special loading logic. For
example, you could load templates from a database, or directly from a Subversion repository using
Subversion’s Python bindings, or (as shown shortly) from a ZIP archive.

A template loader—that is, each entry in the TEMPLATE_LQADERS setting —is expected to be a callable with this
interface:

| oad_t enpl at e_source(tenpl ate_nane, tenplate_dirs=None)

The t enpl at e_nane argument is the name of the template to load (as passed to | oader. get _tenpl ate() or
| oader. sel ect _tenplate()), and tenpl ate_di rs is an optional list of directories to search instead of
TEMPLATE_DI RS.

If a loader is able to successfully load a template, it should return a tuple:

(tenpl ate_source, tenplate_path). Here, tenpl at e_sour ce is the template string that will be compiled by
the template engine, and t enpl at e_pat h is the path the template was loaded from. That path might be shown
to the user for debugging purposes, so it should quickly identify where the template was loaded from.

If the loader is unable to load a template, it should raise dj ango. t enpl at e. Tenpl at eDoesNot Exi st .

Each loader function should also have an i s_usabl e function attribute. This is a Boolean that informs the
template engine whether this loader is available in the current Python installation. For example, the eggs
loader (which is capable of loading templates from Python eggs) sets i s_usabl e to Fal se if the
pkg_resour ces module isn’'t installed, because pkg_resour ces is necessary to read data from eggs.

An example should help clarify all of this. Here’s a template loader function that can load templates from a ZIP
file. It uses a custom setting, TEMPLATE_ZI P_FI LES, as a search path instead of TEMPLATE DI RS, and it expects
each item on that path to be a ZIP file containing templates:

import zipfile
from dj ango. conf inport settings
from dj ango. tenpl ate inport Tenpl at eDoesNot Exi st

def load tenplate source(tenpl ate _nanme, tenplate dirs=None):
"""Tenpl ate | oader that |oads tenplates froma ZIP file.

tenpl ate_zipfiles = getattr(settings, "TEMPLATE ZIP_FILES", [])

Try each ZIP file in TEMPLATE ZI P_FI LES.
for fnane in tenplate_zipfiles:
try:
z = zipfile.ZpFile(fnane)
source = z.read(tenplate_nane)
except (I Oerror, KeyError):

conti nue
z.cl ose()
We found a tenplate, so return the source.
tenplate path = "%: %" % (fnanme, tenplate_nane)

return (source, tenplate_path)

If we reach here, the tenplate couldn't be | oaded
rai se Tenpl at eDoesNot Exi st (t enpl at e_nan®)

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

This loader is always usable (since zipfile is included with Python)
| oad_tenplate _source.is_usable = True

The only step left if we want to use this loader is to add it to the TEMPLATE_LOADERS setting. If we put this
code in a package called nysi te. zi p_| oader, then we add nysi te. zi p_| oader. | oad_t enpl at e_sour ce to
TEMPLATE_LOADERS.

Using the Built-in Template Reference

Django’s admin interface includes a complete reference of all template tags and filters available for a given
site. It’s designed to be a tool that Django programmers give to template developers. To see it, go to the
admin interface and click the Documentation link at the upper right of the page.

The reference is divided into four sections: tags, filters, models, and views. The tags and filters sections
describe all the built-in tags (in fact, the tag and filter references in Chapter 4 come directly from those pages)
as well as any custom tag or filter libraries available.

The views page is the most valuable. Each URL in your site has a separate entry here. If the related view
includes a docstring, clicking the URL will show you the following:

The name of the view function that generates that view

A short description of what the view does

The context, or a list of variables available in the view’s template

The name of the template or templates that are used for that view

For a detailed example of view documentation, read the source code for Django’s generic obj ect _| i st view,
which is in dj ango/ vi ews/ generic/list_detail.py.

Because Django-powered sites usually use database objects, the models pages describe each type of object in
the system along with all the fields available on that object.

Taken together, the documentation pages should tell you every tag, filter, variable, and object available to you
in a given template.

Configuring the Template System in Standalone Mode

Note

This section is only of interest to people trying to use the template system as an output
component in another application. If you are using the template system as part of a Django
application, the information presented here doesn’t apply to you.

Normally, Django will load all the configuration information it needs from its own default configuration file,
combined with the settings in the module given in the DJANGO_SETTI NGS_MCODULE environment variable. But if
you're using the template system independently of the rest of Django, the environment variable approach isn’t
very convenient, because you probably want to configure the template system in line with the rest of your
application rather than dealing with settings files and pointing to them via environment variables.

To solve this problem, you need to use the manual configuration option described fully Appendix E. In a
nutshell, you need to import the appropriate pieces of the template system and then, before you call any of the
template functions, call dj ango. conf. settings. confi gure() with any settings you wish to specify.

You might want to consider setting at least TEMPLATE DI RS (if you are going to use template loaders),
DEFAULT_CHARSET (although the default of ut f - 8 is probably fine), and TEMPLATE_DEBUG. All available settings
are described in Appendix E, and any setting starting with TEMPLATE_ is of obvious interest.

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

Chapter 10: Extending the Template Engine

What’s Next

So far this book has assumed that the content you’re displaying is HTML. This isn’t a bad assumption for a
book about Web development, but at times you’ll want to use Django to output other data formats.

The next chapter describes how you can use Django to produce images, PDFs, and any other data format you
can imagine.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter10/[2009.01.07. 10:40:24]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 11: Generating Non-HTML Content

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 11: Generating Non-HTML Content

Usually when we talk about developing Web sites, we’re talking about producing HTML. Of course, there’s a lot
more to the Web than HTML; we use the Web to distribute data in all sorts of formats: RSS, PDFs, images, and
so forth.

So far we’ve focused on the common case of HTML production, but in this chapter we’ll take a detour and look
at using Django to produce other types of content.

Django has convenient built-in tools that you can use to produce some common non-HTML content:

= RSS/Atom syndication feeds

= Sitemaps (an XML format originally developed by Google that gives hints to search engines)

We’ll examine each of those tools a little later on, but first we’ll cover the basic principles.

The basics: views and MIME-types

Remember this from Chapter 3?

A view function, or view for short, is simply a Python function that takes a Web request and
returns a Web response. This response can be the HTML contents of a Web page, or a
redirect, or a 404 error, or an XML document, or an image...or anything, really.

More formally, a Django view function must

= Accept an Ht t pRequest instance as its first argument

= Return an Ht t pResponse instance

The key to returning non-HTML content from a view lies in the Ht t pResponse class, specifically the nmi net ype
constructor argument. By tweaking the MIME type, we can indicate to the browser that we’ve returned a
response of a different format.

For example, let’s look at a view that returns a PNG image. To keep things simple, we’ll just read the file off
the disk:

from dj ango. http inport HttpResponse

def ny_i mage(request):
i mage_data = open("/path/to/ny/imge.png", "rb").read()
return Htt pResponse(i mage_data, m netype="inage/png")

That’s it! If you replace the image path in the open() call with a path to a real image, you can use this very
simple view to serve an image, and the browser will display it correctly.

The other important thing to keep in mind is that Ht t pResponse objects implement Python’s standard file API.
This means that you can use an Ht t pResponse instance in any place Python (or a third-party library) expects a
file.

For an example of how that works, let’s take a look at producing CSV with Django.

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 11: Generating Non-HTML Content

Producing CSV

CSV is a simple data format usually used by spreadsheet software. It's basically a series of table rows, with
each cell in the row separated by a comma (CSV stands for comma-separated values). For example, here’s
some data on “unruly” airline passengers in CSV format:

Year, Unruly Airline Passengers
1995, 146
1996, 184
1997, 235
1998, 200
1999, 226
2000, 251
2001, 299
2002, 273
2003, 281
2004, 304
2005, 203

Note

The preceding listing contains real numbers; they come courtesy of the US Federal Aviation
Administration. See http://www.faa.gov/data_statistics/passengers_cargo/unruly passengers/.

Though CSV looks simple, it's not a format that’s ever been formally defined. Different pieces of software
produce and consume different variants of CSV, making it a bit tricky to use. Luckily, Python comes with a
standard CSV library, csv, that is pretty much bulletproof.

Because the csv module operates on file-like objects, it's a snap to use an Ht t pResponse instead:

i mport csv
from dj ango. http inport H tpResponse

Number of unruly passengers each year 1995 - 2005. In a real application
this would likely cone from a database or sone other back-end data store.
UNRULY_PASSENGERS = [146, 184, 235, 200, 226, 251, 299, 273, 281, 304, 203]

def unruly_passengers_csv(request):
Create the HttpResponse object with the appropriate CSV header.
response = Htt pResponse(m nmetype="text/csv')
response[' Content-Disposition'] = '"attachnment; fil ename=unruly.csv'

Create the CSV witer using the HttpResponse as the "file"

witer = csv.writer(response)

witer.witerow(['Year', '"Unruly Airline Passengers'])

for (year, num in zip(range(1995, 2006), UNRULY_PASSENGERS) :
witer.witerow([year, nuni)

return response

The code and comments should be pretty clear, but a few things deserve special mention:

= The response is given the t ext/ csv MIME type (instead of the default t ext/ ht ml). This tells browsers that
the document is a CSV file.

= The response gets an additional Cont ent - Di sposi ti on header, which contains the name of the CSV file.

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

http://www.faa.gov/data_statistics/passengers_cargo/unruly_passengers/

Chapter 11: Generating Non-HTML Content

This header (well, the “attachment” part) will instruct the browser to prompt for a location to save the file
(instead of just displaying it). This file name is arbitrary; call it whatever you want. It will be used by
browsers in the Save As dialog.

= Hooking into the CSV-generation API is easy: just pass r esponse as the first argument to csv. witer.
The csv. writer function expects a filelike object, and Ht t pResponse objects fit the bill.

= For each row in your CSV file, call witer.witerow, passing it an iterable object such as a list or tuple.

= The CSV module takes care of quoting for you, so you don’t have to worry about escaping strings with
quotes or commas in them. Just pass information to wri t erow() , and it will do the right thing.

This is the general pattern you’ll use any time you need to return non-HTML content: create an Htt pResponse
response object (with a special MIME type), pass it to something expecting a file, and then return the
response.

Let’'s look at a few more examples.

Generating PDFs

Portable Document Format (PDF) is a format developed by Adobe that’s used to represent printable
documents, complete with pixel-perfect formatting, embedded fonts, and 2D vector graphics. You can think of
a PDF document as the digital equivalent of a printed document; indeed, PDFs are usually used when you need
to give a document to someone else to print.

You can easily generate PDFs with Python and Django thanks to the excellent open source ReportLab library
(http://www.reportlab.org/rl_toolkit.html). The advantage of generating PDF files dynamically is that you can
create customized PDFs for different purposes — say, for different users or different pieces of content.

For example, we used Django and ReportLab at KUSports.com to generate customized, printer-ready NCAA

tournament brackets.

Installing ReportLab

Before you do any PDF generation, however, you’ll need to install ReportLab. It’'s usually pretty simple: just
download and install the library from http://www.reportlab.org/downloads.html.

The user guide (naturally available only as a PDF file) at http://www.reportlab.org/rsrc/userguide.pdf has
additional installation instructions.

Note

If you're using a modern Linux distribution, you might want to check your package management
utility before installing ReportLab. Most package repositories have added ReportLab.

For example, if you're using the (excellent) Ubuntu distribution, a simple
apt - get install python-reportlab will do the trick nicely.

Test your installation by importing it in the Python interactive interpreter:
>>> jnport reportlab

If that command doesn’t raise any errors, the installation worked.

Writing Your View

Like CSV, generating PDFs dynamically with Django is easy because the ReportLab API acts on filelike objects.

Here’s a “Hello World” example:

from reportlab. pdf gen i nport canvas

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

http://www.reportlab.org/rl_toolkit.html
http://www.reportlab.org/downloads.html
http://www.reportlab.org/rsrc/userguide.pdf

Chapter 11: Generating Non-HTML Content

from dj ango. http inport HttpResponse

def hell o_pdf (request):
Create the HttpResponse object with the appropriate PDF headers.
response = Htt pResponse(m nmetype="application/pdf")
response[' Content-Disposition'] = "attachnent; fil enane=hell o. pdf'

Create the PDF object, using the response object as its "file."
p = canvas. Canvas(response)

Draw things on the PDF. Here's where the PDF generation happens.
See the ReportlLab docunentation for the full list of functionality.
p.drawString(100, 100, "Hello world.")

Cl ose the PDF object cleanly, and we're done.
p. showPage()

p. save()

return response

A few notes are in order:

= Here we use the appl i cati on/ pdf MIME type. This tells browsers that the document is a PDF file, rather
than an HTML file. If you leave off this information, browsers will probably interpret the response as HTML,
which will result in scary gobbledygook in the browser window.

= Hooking into the ReportLab API is easy: just pass r esponse as the first argument to canvas. Canvas. The
Canvas class expects a filelike object, and Ht t pResponse objects fit the bill.

= All subsequent PDF-generation methods are called on the PDF object (in this case, p), not on r esponse.

= Finally, it’'s important to call showPage() and save() on the PDF file (or else you’ll end up with a
corrupted PDF file).

Complex PDFs

If you're creating a complex PDF document (or any large data blob), consider using the cStri ngl Olibrary as a
temporary holding place for your PDF file. The cStri ngl Olibrary provides a file-like object interface that is
written in C for maximum efficiency.

Here’s the previous “Hello World” example rewritten to use ¢St ri ngl O:

fromcStringl O i nport StringlO
from reportlab. pdf gen i nport canvas
from dj ango. http inport HttpResponse

def hell o_pdf (request):
Create the HttpResponse object with the appropriate PDF headers.
response = Htt pResponse(m nmetype="application/pdf")
response[' Content-Disposition'] = "attachnent; fil ename=hell o. pdf’

temp = Stringl Q)

Create the PDF object, using the Stringl O object as its "file."
p = canvas. Canvas(tenp)

Draw things on the PDF. Here's where the PDF generation happens.

See the ReportlLab docunentation for the full list of functionality.
p.drawString(100, 100, "Hello world.")

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

Chapter 11: Generating Non-HTML Content

Cl ose the PDF object cleanly.
p. showPage()
p. save()

Get the value of the Stringl O buffer and wite it to the response.
response.wite(tenp. getval ue())
return response

Other Possibilities

There’s a whole host of other types of content you can generate in Python. Here are a few more ideas and
some pointers to libraries you could use to implement them:

= ZI|P files: Python’s standard library ships with the zi pfi | e module, which can both read and write
compressed ZIP files. You could use it to provide on-demand archives of a bunch of files, or perhaps
compress large documents when requested. You could similarly produce TAR files using the standard
library tarfil e module.

= Dynamic images: The Python Imaging Library (PIL; http://www.pythonware.com/products/pil/) is a
fantastic toolkit for producing images (PNG, JPEG, GIF, and a whole lot more). You could use it to
automatically scale down images into thumbnails, composite multiple images into a single frame, or even
do Web-based image processing.

= Plots and charts: There are a number of incredibly powerful Python plotting and charting libraries you
could use to produce on-demand maps, charts, plots, and graphs. We can’t possibly list them all, so here
are a couple of the highlights:

= mat plotlib (http://matplotlib.sourceforge.net/) can be used to produce the type of high-quality plots
usually generated with MatLab or Mathematica.

= pygraphvi z (https://networkx.lanl.gov/wiki/pygraphviz), an interface to the Graphviz graph layout
toolkit (http://graphviz.org/), can be used for generating structured diagrams of graphs and networks.

In general, any Python library capable of writing to a file can be hooked into Django. The possibilities really are
endless.

Now that we’ve looked at the basics of generating non-HTML content, let’s step up a level of abstraction.
Django ships with some pretty nifty built-in tools for generating some common types of non-HTML content.

The Syndication Feed Framework

Django comes with a high-level syndication-feed-generating framework that makes creating RSS and Atom
feeds easy.

j What’s RSS? What’s Atom?

RSS and Atom are both XML-based formats you can use to provide automatically updating “feeds”
of your site’s content. Read more about RSS at http://www.whatisrss.com/, and get information
on Atom at http://www.atomenabled.org/.

To create any syndication feed, all you have to do is write a short Python class. You can create as many feeds
as you want.

The high-level feed-generating framework is a view that’s hooked to / f eeds/ by convention. Django uses the
remainder of the URL (everything after / f eeds/) to determine which feed to return.

To create a feed, you’ll write a Feed class and point to it in your URLconf (see Chapters 3 and 8 for more about

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

http://www.pythonware.com/products/pil/
http://matplotlib.sourceforge.net/
https://networkx.lanl.gov/wiki/pygraphviz
http://graphviz.org/
http://www.whatisrss.com/
http://www.atomenabled.org/

Chapter 11: Generating Non-HTML Content

URLconfs).

Initialization

To activate syndication feeds on your Django site, add this URLconf:

(r'~Meeds/(?P<url>.*)/$',
' dj ango. contri b. syndi cati on. vi ews. f eed’ ,
{'feed _dict': feeds}

),

This line tells Django to use the RSS framework to handle all URLs starting with "f eeds/" . (You can change
that "f eeds/" prefix to fit your own needs.)

This URLconf line has an extra argument: {' feed_dict': feeds}. Use this extra argument to pass the
syndication framework the feeds that should be published under that URL.

Specifically, f eed_di ct should be a dictionary that maps a feed’s slug (short URL label) to its Feed class. You
can define the feed_di ct in the URLconf itself. Here’s a full example URLconf:

from dj ango. conf.urls.defaults inmport *
from nyproject.feeds inport LatestEntries, LatestEntriesByCategory

feeds = {
‘"latest': LatestEntries,
‘categories': LatestEntriesByCategory,
}
url patterns = patterns('’',
...
(r'~eeds/(?P<url>.*)/$", 'django.contrib.syndication.views.feed",
{"'feed dict': feeds}),
#o...

The preceding example registers two feeds:

= The feed represented by Lat est Entri es will live at f eeds/ | atest/ .

= The feed represented by Lat est Entri esByCat egory will live at f eeds/ cat egori es/ .

Once that’s set up, you’ll need to define the Feed classes themselves.

A Feed class is a simple Python class that represents a syndication feed. A feed can be simple (e.g., a “site
news” feed, or a basic feed displaying the latest entries of a blog) or more complex (e.g., a feed displaying all
the blog entries in a particular category, where the category is variable).

Feed classes must subclass dj ango. contri b. syndi cati on. f eeds. Feed. They can live anywhere in your code
tree.

A Simple Feed

This simple example, taken from chicagocrime.org, describes a feed of the latest five news items:

from dj ango. contri b. syndi cati on. feeds inport Feed
from chi cagocri ne. nodel s inport Newsltem

class LatestEntries(Feed):

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

Chapter 11: Generating Non-HTML Content

title = "Chicagocrine.org site news"
link = "/sitenews/"
description = "Updates on changes and additions to chicagocrine.org."

def itens(self):
return Newsltem objects.order_by('-pub_date')[:5]

The important things to notice here are as follows:
= The class subclasses dj ango. contri b. syndi cati on. f eeds. Feed.

= title,link, and description correspond to the standard RSS <titl e>, <l ink>, and <descri pti on>
elements, respectively.

= itens() is simply a method that returns a list of objects that should be included in the feed as <i t en»
elements. Although this example returns Newsl| t emobjects using Django’s database API, i t ens() doesn’t
have to return model instances.

You do get a few bits of functionality “for free” by using Django models, but i t ens() can return any type
of object you want.
There’s just one more step. In an RSS feed, each <itenr has a <title>, <link>, and <descri pti on>. We

need to tell the framework what data to put into those elements.

= To specify the contents of <titl e> and <descri pti on>, create Django templates (see Chapter 4) called
feeds/latest _title.htnl and feeds/| atest_description. htnm, where | at est is the sl ug specified in
the URLconf for the given feed. Note that the . ht 1 extension is required.

The RSS system renders that template for each item, passing it two template context variables:

= 0bj : The current object (one of whichever objects you returned initens()).

= site: Adjango. nodel s.core.sites. Site object representing the current site. This is useful for
{{ site.domain }} or{{ site.name }}.

If you don’t create a template for either the title or description, the framework will use the template
"{{ obj }}" by default — that is, the normal string representation of the object.

You can also change the names of these two templates by specifying title_tenpl ate and
description_tenpl at e as attributes of your Feed class.

= To specify the contents of <l i nk>, you have two options. For each item initens() , Django first tries
executing a get _absol ute_url () method on that object. If that method doesn’t exist, it tries calling a
method i tem | i nk() in the Feed class, passing it a single parameter, i t em which is the object itself.

Both get _absol ute_url () anditemlink() should return the item’s URL as a normal Python string.

= For the previous Lat est Entri es example, we could have very simple feed templates. | atest _title. htni
contains:

{{ obj.title }}
and | at est _description. htm contains:
{{ obj.description }}

It's almost too easy ...

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

Chapter 11: Generating Non-HTML Content

A More Complex Feed

The framework also supports more complex feeds, via parameters.

For example, chicagocrime.org offers an RSS feed of recent crimes for every police beat in Chicago. It would be
silly to create a separate Feed class for each police beat; that would violate the Don’'t Repeat Yourself (DRY)
principle and would couple data to programming logic.

Instead, the syndication framework lets you make generic feeds that return items based on information in the
feed’s URL.

On chicagocrime.org, the police-beat feeds are accessible via URLs like this:

= http://ww. chi cagocrine. org/rss/ beats/ 0613/ : Returns recent crimes for beat 0613

= http://ww. chicagocrine. org/rss/ beats/ 1424/ : Returns recent crimes for beat 1424

The slug here is "beat s" . The syndication framework sees the extra URL bits after the slug — 0613 and 1424
— and gives you a hook to tell it what those URL bits mean and how they should influence which items get
published in the feed.

An example makes this clear. Here’s the code for these beat-specific feeds:
from dj ango. core. exceptions inport Object DoesNot Exi st

cl ass Beat Feed(Feed):
def get _object(self, bits):
In case of "/rss/beats/0613/foo/bar/baz/", or other such
clutter, check that bits has only one nenber.
if len(bits) != 1:
rai se bj ect DoesNot Exi st
return Beat.objects. get(beat__exact=bits[0])

def title(self, obj):
return "Chicagocrine.org: Crinmes for beat %" % obj. beat

def link(self, obj):
return obj.get _absolute_ url ()

def description(self, obj):
return "Crinmes recently reported in police beat %" % obj. beat

def itens(self, obj):
crimes = Crine.objects.filter(beat__id__exact=obj.id)
return crinmes.order_by('-crinme_date')[:30]

Here’s the basic algorithm the RSS framework, given this class and a request to the URL / rss/ beat s/ 0613/ :

1. The framework gets the URL / rss/ beat s/ 0613/ and notices there’s an extra bit of URL after the slug. It
splits that remaining string by the slash character (*/") and calls the Feed class’s get _obj ect () method,
passing it the bits.

In this case, bitsis [' 0613'] . For a request to / rss/ beat s/ 0613/ f oo/ bar/ , bits would be
['0613", 'foo', 'bar'].

2. get_object () is responsible for retrieving the given beat, from the given bits.

In this case, it uses the Django database API to retrieve the beat. Note that get _obj ect () should raise
dj ango. core. excepti ons. Cbj ect DoesNot Exi st if given invalid parameters. There’s no t ry/except

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

Chapter 11: Generating Non-HTML Content

around the Beat . obj ect s. get () call, because it’'s not necessary. That function raises Beat . DoesNot Exi st
on failure, and Beat . DoesNot Exi st is a subclass of Obj ect DoesNot Exi st . Raising Cbj ect DoesNot Exi st in
get _obj ect () tells Django to produce a 404 error for that request.

3. To generate the feed’s <titl e>, <l i nk>, and <descri pti on>, Django uses the title(), link(), and
descri ption() methods. In the previous example, they were simple string class attributes, but this
example illustrates that they can be either strings or methods. For each of titl e, |i nk, and
descri pti on, Django follows this algorithm:

1. It tries to call a method, passing the obj argument, where obj is the object returned by
get _object () .
2. Failing that, it tries to call a method with no arguments.

3. Failing that, it uses the class attribute.

4. Finally, note that i t ens() in this example also takes the obj argument. The algorithm for i t ens is the
same as described in the previous step — first, it tries i t ens(obj), then i t ens() , and then finally an
i tens class attribute (which should be a list).

Full documentation of all the methods and attributes of the Feed classes is always available from the official
Django documentation (http://www.djangoproject.com/documentation/0.96/syndication_feeds/).

Specifying the Type of Feed

By default, the syndication framework produces RSS 2.0. To change that, add a f eed_t ype attribute to your
Feed class:

from dj ango. utils. feedgenerator inport AtomlFeed

cl ass MyFeed(Feed):
feed type = AtomlFeed

Note that you set f eed_t ype to a class object, not an instance. Currently available feed types are shown in

Table 11-1.

Table 11-1. Feed Types
Feed Class Format
dj ango. uti | s. feedgenerat or. Rss201r ev2Feed RSS 2.01 (default)
dj ango. util s. feedgenerat or. RssUser| and091Feed RSS 0.91
dj ango. util s. feedgener at or. At omLFeed Atom 1.0
Enclosures

To specify enclosures (i.e., media resources associated with a feed item such as MP3 podcast feeds), use the
itemenclosure_url,itemenclosure_|l ength, anditem encl osure_mni ne_type hooks, for example:

from nmyproject.nodels inport Song
cl ass MyFeedW t hEncl osur es(Feed):
title = "Exanple feed with encl osures”

link = "/feeds/exanpl e-with-encl osures/™

def itens(self):
return Song.objects.all()[:30]

def itemenclosure url(self, item:

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

http://www.djangoproject.com/documentation/0.96/syndication_feeds/

Chapter 11: Generating Non-HTML Content

return itemsong_url

def itemenclosure_|length(self, item:
return item song | ength

item encl osure_m me_type = "audi o/ npeg"

This assumes, of course, that you've created a Song object with song_ur| and song_| engt h (i.e., the size in
bytes) fields.

Language

Feeds created by the syndication framework automatically include the appropriate <l anguage> tag (RSS 2.0)
or xm : | ang attribute (Atom). This comes directly from your LANGUAGE _CODE setting.

URLs

The | i nk method/attribute can return either an absolute URL (e.g., "/ bl og/ ") or a URL with the fully qualified
domain and protocol (e.g., "http://ww. exanpl e. conf bl og/ "). If | i nk doesn’t return the domain, the
syndication framework will insert the domain of the current site, according to your S| TE_| D setting.

Atom feeds require a <l i nk rel ="sel f"> that defines the feed’s current location. The syndication framework
populates this automatically, using the domain of the current site according to the S| TE | D setting.

Publishing Atom and RSS Feeds in Tandem

Some developers like to make available both Atom and RSS versions of their feeds. That's easy to do with
Django: just create a subclass of your f eed class and set the f eed_t ype to something different. Then update
your URLconf to add the extra versions. Here’s a full example:

from dj ango. contri b. syndi cation. feeds inport Feed

from chi cagocri ne. nodel s inport Newsltem
from dj ango. utils. feedgenerator inport AtomlFeed

cl ass RssSit eNewsFeed(Feed):

title = "Chicagocrine.org site news"
link = "/sitenews/"
description = "Updates on changes and additions to chicagocrine.org."

def itens(self):
return Newsltem objects.order_by('-pub_date')[:5]

cl ass AtontiteNewsFeed(RssSit eNewsFeed) :
feed type = AtonlFeed

And here’s the accompanying URLconf:

from dj ango. conf.urls.defaults inport *
from nmyproject.feeds inport RssSiteNewsFeed, AtonfiteNewsFeed

feeds = {
'rss': RssSiteNewsFeed,
"atonl : AtonSit eNewsFeed,

url patterns = patterns('’',

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

Chapter 11: Generating Non-HTML Content

#o...

(r'~Meeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed
{'feed dict': feeds}),

#o...

The Sitemap Framework

A sitemap is an XML file on your Web site that tells search engine indexers how frequently your pages change
and how “important” certain pages are in relation to other pages on your site. This information helps search
engines index your site.

For example, here’s a piece of the sitemap for Django’s Web site
(http://www.djangoproject.com/sitemap.xml):

<?xm version="1.0" encodi ng="UTF- 8" ?>
<urlset xm ns="http://ww.sitemaps.org/schemas/sitenmap/0.9">
<url >
<l oc>htt p: // ww. dj angopr oj ect. com docunent ati on/ </ | oc>
<changef r eq>weekl y</ changef r eq>
<priority>0.5</priority>
</url>
<url >
<l oc>ht t p: / / ww. dj angopr oj ect. com docunent ati on/ 0_90/ </ | oc>
<changef r eq>never </ changef r eq>
<priority>0.1</priority>
</url>

</url set>
For more on sitemaps, see http://www.sitemaps.org/.

The Django sitemap framework automates the creation of this XML file by letting you express this information
in Python code. To create a sitemap, you just need to write a Si t emap class and point to it in your URLconf.

Installation

To install the sitemap application, follow these steps:

1. Add 'django.contrib.sitenmaps' to your | NSTALLED APPS setting.

2. Make sure ' dj ango. tenpl ate. | oaders. app_directories.| oad_tenpl ate_source' is in your
TEMPLATE_LOADERS setting. It’s in there by default, so you’ll need to change this only if you've changed
that setting.

3. Make sure you’ve installed the sites framework (see Chapter 14).

Note
g The sitemap application doesn’t install any database tables. The only reason it needs to go into
| NSTALLED_APPS is so the | oad_t enpl at e_sour ce template loader can find the default templates.

Initialization

To activate sitemap generation on your Django site, add this line to your URLconf:

(r'"sitemap. xm $', 'django.contrib.sitenmaps.views.sitemap', {'sitemaps': sitenmaps})

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

http://www.djangoproject.com/sitemap.xml
http://www.sitemaps.org/

Chapter 11: Generating Non-HTML Content

This line tells Django to build a sitemap when a client accesses / si t emap. xim .

The name of the sitemap file is not important, but the location is. Search engines will only index links in your
sitemap for the current URL level and below. For instance, if sit emap. xm lives in your root directory, it may
reference any URL in your site. However, if your sitemap lives at / cont ent/ si t emap. xnl , it may only reference
URLs that begin with / content/.

The sitemap view takes an extra, required argument: {' si temaps': sitenmaps}. sitemaps should be a
dictionary that maps a short section label (e.g., bl og or news) to its Si t emap class (e.g., Bl ogSi t emap or
NewsSi t emap). It may also map to an instance of a Sit enap class (e.g., Bl ogSi t emap(sone_var)).

Sitemap Classes

A Si temap class is a simple Python class that represents a “section” of entries in your sitemap. For example,
one Si t enap class could represent all the entries of your Weblog, while another could represent all of the
events in your events calendar.

In the simplest case, all these sections get lumped together into one si t emap. xm , but it’'s also possible to use
the framework to generate a sitemap index that references individual sitemap files, one per section (as
described shortly).

Si t emap classes must subclass dj ango. contri b. si tenaps. Si t emap. They can live anywhere in your code tree.

For example, let’'s assume you have a blog system, with an Ent ry model, and you want your sitemap to
include all the links to your individual blog entries. Here’s how your Si t enap class might look:

from dj ango. contrib. sitemaps inport Sitenap
from nysite. bl og. nodel s inport Entry

cl ass Bl ogSitemap(Sitenap):
changefreq = "never"
priority = 0.5

def itens(self):
return Entry.objects.filter(is_draft=Fal se)

def |astnod(self, obj):
return obj.pub_date

Declaring a Si t enap should look very similar to declaring a Feed; that’s by design.

Like Feed classes, Sit emap members can be either methods or attributes. See the steps in the earlier “A
Complex Example” section for more about how this works.

A Sitemap class can define the following methods/attributes:

= itens (required): Provides list of objects. The framework doesn’t care what type of objects they are; all
that matters is that these objects get passed to the | ocation(), | astnod(), changefreq(), and
priority() methods.

= | ocation (optional): Gives the absolute URL for a given object. Here, “absolute URL” means a URL that
doesn’t include the protocol or domain. Here are some examples:

= Good: ' /foolbar/'
= Bad: ' exanpl e. coni f oo/ bar/"'
= Bad: ' http://exanple.con foolbar/’

If | ocati on isn’t provided, the framework will call the get _absol ute_url () method on each object as

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

Chapter 11: Generating Non-HTML Content

returned by i tems() .
= | ast nod (optional): The object’s “last modification” date, as a Python dat et i ne object.

= changefreq (optional): How often the object changes. Possible values (as given by the Sitemaps
specification) are as follows:

= 'al ways'
= 'hourly'
= 'daily

= " weekly'

= 'nonthly’

= 'yearly'
= 'never'

= priority (optional): A suggested indexing priority between 0. 0 and 1. 0. The default priority of a page is
0. 5; see the http://sitemaps.org documentation for more about how pri ority works.

Shortcuts

The sitemap framework provides a couple convenience classes for common cases. These are described in the
sections that follow.

FlatPageSitemap

The dj ango. contri b. si t emaps. Fl at PageSi t emap class looks at all flat pages defined for the current site and
creates an entry in the sitemap. These entries include only the | ocat i on attribute — not | ast nod,
changefreq, orpriority.

See Chapter 14 for more about flat pages.

GenericSitemap

The Generi cSi t emap class works with any generic views (see Chapter 9) you already have.

To use it, create an instance, passing in the same i nf o_di ct you pass to the generic views. The only
requirement is that the dictionary have a queryset entry. It may also have a date_fi el d entry that specifies
a date field for objects retrieved from the queryset . This will be used for the | ast nod attribute in the
generated sitemap. You may also pass priority and changefreq keyword arguments to the Ceneri cSit emap
constructor to specify these attributes for all URLs.

Here’s an example of a URLconf using both Fl at PageSi t emap and CGeneri cSit eMap (with the hypothetical
Ent ry object from earlier):

from dj ango. conf.urls.defaults inport *
from dj ango. contrib. sitemaps inport Fl at PageSitemap, GenericSitenmap
from nysite. bl og. nodel s inport Entry

info dict = {
‘queryset': Entry.objects.all (),
"date field : 'pub_date',

sitemaps = {
‘fl at pages' : Fl at PageSi t emap,
"blog': CenericSitemap(info_dict, priority=0.86),

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

http://sitemaps.org/

Chapter 11: Generating Non-HTML Content

url patterns = patterns('',
some generic view using info_dict
#o...

the sitemap

(r'~sitemap. xm $',
' dj ango. contrib. sitemaps. vi ews. sitemap’,
{'sitemaps': sitemaps})

Creating a Sitemap Index

The sitemap framework also has the ability to create a sitemap index that references individual sitemap files,
one per each section defined in your si t emaps dictionary. The only differences in usage are as follows:

= You use two views in your URLconf: dj ango. contri b. si temaps. vi ews. i ndex and
dj ango. contri b. sitenmaps. vi ews. sitenap.

= The dj ango. contrib. sitemaps. vi ews. sitemap view should take a secti on keyword argument.
Here is what the relevant URLconf lines would look like for the previous example:

(r'~sitemap. xm $'
' dj ango. contrib. sitemaps. vi ews. i ndex',
{"sitemaps': sitemaps}),

(r'"sitemap- (?P<section>. +).xm $',
' dj ango. contri b. sitemaps. vi ews. si tenap’
{'sitemaps': sitemaps})

This will automatically generate a si t emap. xnm file that references both si t enap- f | at pages. xm and
sitemap- bl og. xnm . The Si t emap classes and the si t emaps dictionary don’t change at all.

Pinging Google
You may want to “ping” Google when your sitemap changes, to let it know to reindex your site. The framework

provides a function to do just that: dj ango. contri b. si t emaps. pi ng_googl e() .

Note

At the time this book was written, only Google responded to sitemap pings. However, it’s quite
likely that Yahoo and/or MSN will soon support these pings as well.

At that time, we’ll likely change the name of pi ng_googl e() to something like
pi ng_sear ch_engi nes() , so make sure to check the latest sitemap documentation at
http://www.djangoproject.com/documentation/0.96/sitemaps/.

pi ng_googl e() takes an optional argument, si t emap_ur| , which should be the absolute URL of your site’s
sitemap (e.g., '/ sitemap. xm '). If this argument isn’'t provided, pi ng_googl e() will attempt to figure out your
sitemap by performing a reverse lookup on your URLconf.

pi ng_googl e() raises the exception dj ango. contri b. sitemaps. Si t emapNot Found if it cannot determine your
sitemap URL.

One useful way to call pi ng_googl e() is from a model’s save() method:

from dj ango. contrib. sitemaps inport ping_google

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

http://www.djangoproject.com/documentation/0.96/sitemaps/

Chapter 11: Generating Non-HTML Content

cl ass Entry(nodel s. Model) :
oo
def save(sel f):
super (Entry, self).save()
try:
pi ng_googl e()
except Exception
Bare 'except' because we could get a variety
of HITP-rel ated exceptions.
pass

A more efficient solution, however, would be to call pi ng_googl e() from a cron script or some other
scheduled task. The function makes an HTTP request to Google’s servers, so you may not want to introduce
that network overhead each time you call save() .

What’s Next?

Next, we’ll continue to dig deeper into all the nifty built-in tools Django gives you. Chapter 12 looks at all the
tools you need to provide user-customized sites: sessions, users, and authentication.

Onward!

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter11/[2009.01.07. 10:40:34]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 12: Sessions, Users, and Registration

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 12: Sessions, Users, and Registration

It's time for a confession: we’ve been deliberately ignoring an incredibly important aspect of Web development
prior to this point. So far, we’ve thought of the traffic visiting our sites as some faceless, anonymous mass
hurtling itself against our carefully designed pages.

This isn’t true, of course. The browsers hitting our sites have real humans behind them (some of the time, at
least). That's a big thing to ignore: the Internet is at its best when it serves to connect people, not machines.
If we're going to develop truly compelling sites, eventually we’re going to have to deal with the bodies behind
the browsers.

Unfortunately, it’s not all that easy. HTTP is designed to be stateless— that is, each and every request happens
in a vacuum. There’s no persistence between one request and the next, and we can’t count on any aspects of a
request (IP address, user agent, etc.) to consistently indicate successive requests from the same person.

In this chapter you’ll learn how to handle this lack of state. We’'ll start at the lowest level (cookies), and work
up to the high-level tools for handling sessions, users and registration.

Cookies

Browser developers long ago recognized that HTTP’s statelessness poses a huge problem for Web developers,
and thus cookies were born. A cookie is a small piece of information that browsers store on behalf of Web
servers. Every time a browser requests a page from a certain server, it gives back the cookie that it initially
received.

Let’s take a look how this might work. When you open your browser and type in googl e. com, your browser
sends an HTTP request to Google that starts something like this:

GET / HITP/ 1.1
Host: googl e. com

When Google replies, the HTTP response looks something like the following:

HTTP/ 1.1 200 OK

Cont ent - Type: text/htm

Set - Cooki e: PREF=I| D=5b14f 22bdaf 1e81c: TM~1167000671: LM=1167000671;
expi res=Sun, 17-Jan-2038 19: 14: 07 QMr;
pat h=/; domai n=. googl e. com

Server: GA5/ 2.1

Notice the Set - Cooki e header. Your browser will store that cookie value
(PREF=I D=5b14f 22bdaf 1e81c: TM=1167000671: LM=1167000671) and serve it back to Google every time you
access the site. So the next time you access Google, your browser is going to send a request like this:

GET /| HITP/ 1.1
Host: googl e. com
Cooki e: PREF=| D=5b14f 22bdaf 1e81c: TM=1167000671: LM=1167000671

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 12: Sessions, Users, and Registration

Google then can use that Cooki e value to know that you're the same person who accessed the site earlier. This

value might, for example, be a key into a database that stores user information. Google could (and does) use it
to display your name on the page.

Getting and Setting Cookies

When dealing with persistence in Django, most of the time you’ll want to use the higher-level session and/or
user frameworks discussed a little later in this chapter. However, we’ll pause and look at how to read and write
cookies at a low level. This should help you understand how the rest of the tools discussed in the chapter
actually work, and it will come in handy if you ever need to play with cookies directly.

Reading cookies that are already set is incredibly simple. Every request object has a COOKI ES object that acts
like a dictionary; you can use it to read any cookies that the browser has sent to the view:

def show_col or (request):
if "favorite_color" in request.COXI ES:
return Htt pResponse(”Your favorite color is %" %)\
request. COOKI ES["favorite_color"])
el se:
return Htt pResponse(”You don't have a favorite color.")

Writing cookies is slightly more complicated. You need to use the set _cooki e() method on an Ht t pResponse
object. Here’s an example that sets the favorite_col or cookie based on a GET parameter:

def set _col or(request):
if "favorite color" in request. GET:

Create an Htt pResponse object...
response = HttpResponse("”Your favorite color is now %" %)\
request. GET["favorite_color"])

... and set a cookie on the response
response. set _cooki e("favorite_col or",
request. GET["favorite_color"])

return response

el se:
return Htt pResponse("You didn't give a favorite color.")

You can also pass a humber of optional arguments to r esponse. set _cooki e() that control aspects of the
cookie, as shown in Table 12-1.

Table 12-1: Cookie options

Parameter Default Description

max_age None Age (in seconds) that the cookie should last. If this parameter is None,
the cookie will last only until the browser is closed.

expires None The actual date/time when the cookie should expire. It needs to be in the
format "Wy, DD- M h-YY HH MM SS GMI". If given, this parameter
overrides the nax_age parameter.

pat h " The path prefix that this cookie is valid for. Browsers will only pass the
cookie back to pages below this path prefix, so you can use this to
prevent cookies from being sent to other sections of your site.

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

This is especially useful when you don’t control the top level of your site’s
domain.

donai n None The domain that this cookie is valid for. You can use this parameter to
set a cross-domain cookie. For example, domai n=". exanpl e. cont' will set
a cookie that is readable by the domains www. exanpl e. com,
ww\2. exanpl e. com, and an. ot her. sub. domai n. exanpl e. com.

If this parameter is set to None, a cookie will only be readable by the
domain that set it.

secure Fal se If set to True, this parameter instructs the browser to only return this
cookie to pages accessed over HTTPS.

The Mixed Blessing of Cookies

You might notice a number of potential problems with the way cookies work. Let’s look at some of the more
important ones:

= Storage of cookies is essentially voluntary; browsers don’t guarantee anything. In fact, all browsers enable
users to control the policy for accepting cookies. If you want to see just how vital cookies are to the Web,
try turning on your browser’s “prompt to accept every cookie” option.

Despite their nearly universal use, cookies are still the definition of unreliability. This means that
developers should check that a user actually accepts cookies before relying on them.

More important, you should never store important data in cookies. The Web is filled with horror stories of
developers who’ve stored unrecoverable information in browser cookies only to have that data purged by
the browser for one reason or another.

= Cookies (especially those not sent over HTTPS) are not secure. Because HTTP data is sent in cleartext,
cookies are extremely vulnerable to snooping attacks. That is, an attacker snooping on the wire can
intercept a cookie and read it. This means you should never store sensitive information in a cookie.

There’s an even more insidious attack, known as a man-in-the-middle attack, wherein an attacker
intercepts a cookie and uses it to pose as another user. Chapter 19 discusses attacks of this nature in
depth, as well as ways to prevent it.

= Cookies aren’t even secure from their intended recipients. Most browsers provide easy ways to edit the
content of individual cookies, and resourceful users can always use tools like mechanize
(http://wwwsearch.sourceforge.net/mechanize/) to construct HTTP requests by hand.

So you can’t store data in cookies that might be sensitive to tampering. The canonical mistake in this
scenario is storing something like | sLoggedl n=1 in a cookie when a user logs in. You’d be amazed at the
number of sites that make mistakes of this nature; it takes only a second to fool these sites’ “security”
systems.

Django’s Session Framework

With all of these limitations and potential security holes, it's obvious that cookies and persistent sessions are
examples of those “pain points” in Web development. Of course, Django’s goal is to be an effective painkiller,
so it comes with a session framework designed to smooth over these difficulties for you.

This session framework lets you store and retrieve arbitrary data on a per-site visitor basis. It stores data on
the server side and abstracts the sending and receiving of cookies. Cookies use only a hashed session ID—not
the data itself—thus protecting you from most of the common cookie problems.

Let’s look at how to enable sessions and use them in views.

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

http://wwwsearch.sourceforge.net/mechanize/

Chapter 12: Sessions, Users, and Registration

Enabling Sessions

Sessions are implemented via a piece of middleware (see Chapter 15) and a Django model. To enable sessions,
you’ll need to follow these steps:

1. Edit your M DDLEWARE_CLASSES setting and make sure M DDLEWARE_CLASSES contains
' dj ango. contri b. sessi ons. m ddl ewar e. Sessi onM ddl ewar e’ .

2. Make sure ' dj ango. contrib. sessions' is in your | NSTALLED APPS setting (and run nmanage. py syncdb if
you have to add it).

The default skeleton settings created by st art proj ect have both of these bits already installed, so unless
you’ve removed them, you probably don’t have to change anything to get sessions to work.

If you don’t want to use sessions, you might want to remove the Sessi onM ddl ewar e line from
M DDLEWARE_CLASSES and ' dj ango. contri b. sessi ons' from your | NSTALLED APPS. It will save you only a
small amount of overhead, but every little bit counts.

Using Sessions in Views

When Sessi onM ddl ewar e is activated, each Ht t pRequest object—the first argument to any Django view
function—will have a sessi on attribute, which is a dictionary-like object. You can read it and write to it in the
same way you’d use a normal dictionary. For example, in a view you could do stuff like this:

Set a session val ue
request.session["fav_color"] = "blue"

Cet a session value -- this could be called in a different view,
or many requests later (or both):
fav_color = request.session["fav_col or"]

Clear an item from the session:
del request.session["fav_col or"]

Check if the session has a given key:
if "fav_color" in request.session

You can also use other mapping methods like keys() and itens() on request. session.
There are a couple of simple rules for using Django’s sessions effectively:

= Use normal Python strings as dictionary keys on r equest . sessi on (as opposed to integers, objects, etc.).
This is more of a convention than a hard-and-fast rule, but it’'s worth following.

= Session dictionary keys that begin with an underscore are reserved for internal use by Django. In practice,
the framework uses only a small number of underscore-prefixed session variables, but unless you know
what they all are (and you are willing to keep up with any changes in Django itself), staying away from
underscore prefixes will keep Django from interfering with your application.

= Don't replace r equest . sessi on with a new object, and don’t access or set its attributes. Use it like a
Python dictionary.

Let’s take a look at a few quick examples. This simplistic view sets a has_coment ed variable to Tr ue after a
user posts a comment. It's a simple (but not particularly secure) way of preventing a user from posting more
than one comment:

def post _comment (request, new conment):
i f request.session.get('has_comented' , False):
return Htt pResponse(”You' ve already comented.")
¢ = comment s. Comment (coment =new_comrent)

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

c.save()
request.session[' has_comented'] = True
return Htt pResponse(' Thanks for your conment!')

This simplistic view logs in a “member” of the site:

def | ogin(request):
try:
m = Menber. obj ects. get (user nanme__exact =r equest . POST[' user nane'])
if mpassword == request.POST[' password']:
request.session[' menber _id'] = mid
return Htt pResponse("You're |ogged in.")
except Menber. DoesNot Exi st :
return Htt pResponse(”Your username and password didn't match.")

And this one logs out a member, according to | ogi n() :

def | ogout (request):
try:
del request.session[' nenber _id']
except KeyError:
pass
return HttpResponse("You' re |ogged out.")

Note

In practice, this is a lousy way of logging users in. The authentication framework discussed shortly
handles this task for you in a much more robust and useful manner. These examples are
deliberately simplistic so that you can easily see what’s going on.

Setting Test Cookies

As just mentioned, you can’t rely on every browser accepting cookies. So, as a convenience, Django provides
an easy way to test whether a user’s browser accepts cookies. You just need to call

request . session. set_test_cookie() in a view, and check request . sessi on. t est _cooki e_worked() ina
subsequent view—not in the same view call.

This awkward split between set _test_cooki e() and t est _cooki e_worked() is necessary due to the way
cookies work. When you set a cookie, you can’t actually tell whether a browser accepted it until the browser’s
next request.

It’s good practice to use del et e_t est _cooki e() to clean up after yourself. Do this after you’ve verified that
the test cookie worked.

Here’s a typical usage example:
def | ogin(request):

If we subnmitted the form..
i f request.nethod == 'POST' :

Check that the test cookie worked (we set it bel ow):
i f request.session.test cookie worked():

The test cookie worked, so delete it.
request. session. del ete_test_cookie()

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

In practice, we'd need sone logic to check usernane/ password
here, but since this is an exanple...
return Htt pResponse("You're |ogged in.")

The test cookie failed, so display an error nessage. If this
was a real site we'd want to display a friendlier nessage.
el se:

return Htt pResponse("Pl ease enabl e cookies and try again.")

If we didn't post, send the test cookie along with the login form

request. session. set _test_cookie()
return render _to _response('foo/login formhtm")

Note

Again, the built-in authentication functions handle this check for you.

Using Sessions Outside of Views

Internally, each session is just a hormal Django model defined in dj ango. contri b. sessi ons. nodel s. Each
session is identified by a more-or-less random 32-character hash stored in a cookie. Because it's a normal
model, you can access sessions using the normal Django database API:

>>> from dj ango. contri b. sessi ons. nodel s inport Session

>>> s = Session. objects. get (pk='2b1189a188b44ad18c35ell3ac6ceead’)
>>> s, expire_date

datetine. dateti ne(2005, 8, 20, 13, 35, 12)

You’'ll need to call get _decoded() to get the actual session data. This is necessary because the dictionary is

stored in an encoded format:

>>> s.session_data

" KEBRWMMQPTJI19hd XRoX3VzZXJf aWnCnAy Ckkx CnMUMTEXxY2Zj ODI 2Yj . . .
>>> s, get _decoded()

{"user_id: 42}

When Sessions Are Saved

By default, Django only saves to the database if the session has been modified —that is, if any of its dictionary
values have been assigned or deleted:

Session is nodified.
request.session['foo'] = 'bar’

Session is nodified.
del request.session['foo']

Session is nodified.
request.session['foo'] = {}

Gotcha: Session is NOT nodified, because this alters

request.session['foo'] instead of request.session.
request.session['foo' J['bar'] = 'baz'

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

To change this default behavior, set SESSI ON_SAVE_EVERY_REQUEST to True. If SESSI ON_SAVE_EVERY_REQUEST
is True, Django will save the session to the database on every single request, even if it wasn’t changed.

Note that the session cookie is sent only when a session has been created or modified. If
SESSI ON_SAVE_EVERY_REQUEST is Tr ue, the session cookie will be sent on every request. Similarly, the expi res
part of a session cookie is updated each time the session cookie is sent.

Browser-Length Sessions vs. Persistent Sessions

You might have noticed that the cookie Google sent us contained

expi res=Sun, 17-Jan-2038 19: 14: 07 QGM,; . Cookies can optionally contain an expiration date that advises
the browser on when to remove the cookie. If a cookie doesn’t contain an expiration value, the browser will
expire it when the user closes his or her browser window. You can control the session framework’s behavior in
this regard with the SESSI ON_EXPI RE_AT BROWSER_CLCSE setting.

By default, SESSI ON_EXPI RE_AT_BROWSER CLOSE is set to Fal se, which means session cookies will be stored in
users’ browsers for SESSI ON_COCKI E_AGE seconds (which defaults to two weeks, or 1,209,600 seconds). Use
this if you don’t want people to have to log in every time they open a browser.

If SESSI ON_EXPI RE_AT_BROWSER_CLCSE is set to Tr ue, Django will use browser-length cookies.

Other Session Settings

Besides the settings already mentioned, a few other settings influence how Django’s session framework uses
cookies, as shown in Table 12-2.

Table 12-2. Settings that influence cookie behavior

Setting Description Default

SESSI ON_COOKI E_DOVAI N The domain to use for session cookies. Set None
this to a string such as ". | aw ence. coni' for
cross-domain cookies, or use None for a
standard cookie.

SESSI ON_COCKI E_NAME The name of the cookie to use for sessions. "sessi oni d"
This can be any string.

SESSI ON_COKI E_SECURE Whether to use a “secure” cookie for the Fal se
session cookie. If this is set to Tr ue, the
cookie will be marked as “secure,” which
means that browsers will ensure that the
cookie is only sent via HTTPS.

j Technical Details
For the curious, here are a few technical notes about the inner workings of the session

framework:

= The session dictionary accepts any Python object capable of being “pickled.” See the
documentation for Python’s built-in pi ckl e module for information about how this works.

= Session data is stored in a database table named dj ango_sessi on.

= Session data is fetched upon demand. If you never access r equest . sessi on, Django won’t
hit that database table.

= Django only sends a cookie if it needs to. If you don’t set any session data, it won't send a
session cookie (unless SESSI ON_SAVE_EVERY_REQUEST is set to True).

= The Django sessions framework is entirely, and solely, cookie based. It does not fall back to

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration
putting session IDs in URLs as a last resort, as some other tools (PHP, JSP) do.

This is an intentional design decision. Putting sessions in URLs don’t just make URLs ugly, but
also make your site vulnerable to a certain form of session ID theft via the Ref er er header.

If you're still curious, the source is pretty straightforward; look in dj ango. contri b. sessi ons for
more details.

Users and Authentication

We're now halfway to linking browsers directly to Real People™. Sessions give us a way of persisting data
through multiple browser requests; the second part of the equation is using those sessions for user login. Of
course, we can't just trust that users are who they say they are, so we need to authenticate them along the
way.

Naturally, Django provides tools to handle this common task (and many others). Django’s user authentication
system handles user accounts, groups, permissions, and cookie-based user sessions. This system is often
referred to as an auth/auth (authentication and authorization) system. That name recognizes that dealing with
users is often a two-step process. We need to

1. Verify (authenticate) that a user is who he or she claims to be (usually by checking a username and
password against a database of users)

2. Verify that the user is authorized to perform some given operation (usually by checking against a table of

permissions)

Following these needs, Django’s auth/auth system consists of a number of parts:

= Users: People registered with your site

= Permissions: Binary (yes/no) flags designating whether a user may perform a certain task
= Groups: A generic way of applying labels and permissions to more than one user

= Messages: A simple way to queue and display system messages to users

= Profiles: A mechanism to extend the user object with custom fields

If you’'ve used the admin tool (detailed in Chapter 6), you've already seen many of these tools, and if you've
edited users or groups in the admin tool, you've actually been editing data in the auth system’s database
tables.

Enabling Authentication Support

Like the session tools, authentication support is bundled as a Django application in dj ango. contri b, which
needs to be installed. Like the session system, it's also installed by default, but if you've removed it, you'll
need to follow these steps to install it:

1. Make sure the session framework is installed as described earlier in this chapter. Keeping track of users
obviously requires cookies, and thus builds on the session framework.

2. Put'django.contrib.auth' inyour | NSTALLED APPS setting and run nanage. py syncdb.
3. Make sure that ' dj ango. contri b. aut h. mi ddl ewar e. Aut henti cati onM ddl ewar e’ is in your

M DDLEWARE_CLASSES setting—after Sessi onM ddl ewar e.

With that installation out of the way, we’re ready to deal with users in view functions. The main interface you'll
use to access users within a view is request . user ; this is an object that represents the currently logged-in
user. If the user isn’t logged in, this will instead be an AnonynousUser object (see below for more details).

You can easily tell if a user is logged in with the i s_aut henti cat ed() method:

if request.user.is_authenticated():
Do sonething for authenticated users.

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

el se:

Do sonet hing for

Using Users

anonynous users.

Once you have a User —often from r equest . user , but possibly through one of the other methods discussed

shortly—you have a number of fields and methods available on that object. AnonynousUser objects emulate

some of this interface, but not all of it, so you should always check user.is_aut henti cated() before

assuming you're dealing with a bona fide user object. Tables 12-3 and 12-4 list the fields and methods,
respectively, on User objects.

Field

user nane

first_nanme
| ast _name
enai |

password

is_staff

is_active

i S_superuser

| ast _| ogin
date_j oi ned
Method

i s_authenticated()

i s_anonynous()

get _full _name()

set _passwor d(passwd)

check_passwor d(passwd)

get _group_perni ssions()

Table 12-3. Fields on User Objects

Description

Required; 30 characters or fewer. Alphanumeric characters only (letters, digits, and

underscores).

Optional; 30 characters or fewer.

Optional; 30 characters or fewer.

Optional. Email address.

Required. A hash of, and metadata about, the password (Django doesn’t store the
raw password). See the “Passwords” section for more about this value.

Boolean. Designates whether this user can access the admin site.

Boolean. Designates whether this account can be used to log in. Set this flag to
Fal se instead of deleting accounts.

Boolean. Designates that this user has all permissions without explicitly assigning

them.

A datetime of the user’s last login. This is set to the current date/time by default.

A datetime designating when the account was created. This is set to the current
date/time by default when the account is created.

Table 12-4. Methods on User Objects

Description

Always returns Tr ue for “real” User objects. This is a way to
tell if the user has been authenticated. This does not imply
any permissions, and it doesn’t check if the user is active. It
only indicates that the user has sucessfully authenticated.

Returns Tr ue only for AnonynousUser objects (and Fal se for
“real” User objects). Generally, you should prefer using
i s_authenticated() to this method.

Returns the first_nane plus the | ast _nane, with a space in
between.

Sets the user’s password to the given raw string, taking care
of the password hashing. This doesn’t actually save the User
object.

Returns Tr ue if the given raw string is the correct password
for the user. This takes care of the password hashing in
making the comparison.

Returns a list of permission strings that the user has through

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

the groups he or she belongs to.

get _al | _perni ssions() Returns a list of permission strings that the user has, both
through group and user permissions.

has_per mperm Returns Tr ue if the user has the specified permission, where
per mis in the format " package. codenane" . If the user is
inactive, this method will always return Fal se.

has_pernms(perm.|ist) Returns Tr ue if the user has all of the specified permissions. If
the user is inactive, this method will always return Fal se.

has_nodul e_perns(app_| abel) Returns Tr ue if the user has any permissions in the given
app_| abel . If the user is inactive, this method will always
return Fal se.

get _and_del et e_nessages() Returns a list of Message objects in the user’s queue and
deletes the messages from the queue.

emai | _user (subj, nsQ) Sends an email to the user. This email is sent from the
DEFAULT_FROM EMAI L setting. You can also pass a third
argument, from enui | , to override the From address on the
email.

get _profile() Returns a site-specific profile for this user. See the “Profiles
section for more on this method.

Finally, User objects have two many-to-many fields: gr oups and per i ssi ons. User objects can access their
related objects in the same way as any other many-to-many field:

Set a user's groups
nmyuser. groups = group_|i st

Add a user to sone groups:
nmyuser . groups. add(groupl, group2,...)

Renmove a user from some groups
myuser. groups. renove(groupl, group2,...)

Renove a user from all groups:
nmyuser . groups. cl ear ()

Perm ssions work the sane way

nyuser . perm ssions = perm ssion_|ist

nmyuser . per m ssi ons. add(per m ssi onl, pernission2, ...)
nyuser . per m ssi ons. renove(per m ssi onl, permssion2, ...)
nyuser . pern ssi ons. cl ear ()

Logging In and Out

Django provides built-in view functions for handling logging in and out (and a few other nifty tricks), but before
we get to those, let’'s take a look at how to log users in and out “by hand.” Django provides two functions to
perform these actions in dj ango. contri b. aut h: aut henti cate() and | ogi n() .

To authenticate a given username and password, use aut henti cat e() . It takes two keyword arguments,
user nane and passwor d, and it returns a User object if the password is valid for the given username. If the
password is invalid, aut henti cat e() returns None:

>>> from dj ango.contrib inport auth

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

>>> user = auth. authenticate(usernane='john', password='secret')
>>> jf user is not None
print "Correct!"
el se:
print "Oops, that's wong!"

aut henti cat e() only verifies a user’s credentials. To log in a user, use | ogi n() . It takes an Ht t pRequest
object and a User object and saves the user’s ID in the session, using Django’s session framework.

This example shows how you might use both aut henti cate() and | ogi n() within a view function:
from dj ango. contrib inport auth

def | ogin(request):
user nane = request.POST[' user nane']
password = request.POST[' password']
user = auth. aut henti cat e(user nane=user nane, password=passwor d)
if user is not None and user.is_active:
Correct password, and the user is narked "active"
aut h. | ogi n(request, user)
Redirect to a success page.
return Htt pResponseRedirect ("/account/| oggedin/")
el se:
Show an error page
return Htt pResponseRedirect ("/account/invalid/")

To log out a user, use dj ango. contri b. auth. | ogout () within your view. It takes an Ht t pRequest object and
has no return value:

from dj ango. contrib inport auth

def | ogout (request):
aut h. | ogout (request)
Redirect to a success page.
return Htt pResponseRedirect ("/account/| oggedout/")

Note that | ogout () doesn’t throw any errors if the user wasn’t logged in.

In practice, you usually will not need to write your own login/logout functions; the authentication system
comes with a set of views for generically handling logging in and out.

The first step in using the authentication views is to wire them up in your URLconf. You’ll need to add this
snippet:

from dj ango. contrib. auth. views inport |ogin, |ogout

url patterns = patterns('’',
existing patterns here...
(r'Maccounts/login/$', |ogin),
(r'Maccounts/logout/$', |ogout),

/account s/l ogin/ and /accounts/| ogout/ are the default URLs that Django uses for these views.

By default, the | ogi n view renders a template at r egi strati on/ | ogi n. ht M (you can change this template
name by passing an extra view argument ,” “template_name™ 7). This form needs to contain a user nane and a
passwor d field. A simple template might look like this:

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

{% extends "base.htm " %

{% bl ock content %

{%if formerrors %
<p class="error">Sorry, that's not a valid usernane or password</p>
{% endi f %

<form action='."' nmethod=' post'>
<l abel for="usernane">User nane: </l abel >
<i nput type="text" nanme="usernane" val ue=
<l abel for="password">Password: </ | abel >
<i nput type="password" nanme="password" val ue=

i d="user nane" >

i d="password" >

<i nput type="submit" val ue="Ilogin" />
<i nput type="hi dden" name="next" val ue="{{ next|escape }}" />
<form action='."' nethod=' post'>

{% endbl ock %

If the user successfully logs in, he or she will be redirected to / account s/ profil e/ by default. You can
override this by providing a hidden field called next with the URL to redirect to after logging in. You can also
pass this value as a GET parameter to the login view and it will be automatically added to the context as a
variable called next that you can insert into that hidden field.

The logout view works a little differently. By default it renders a template at regi strati on/ | ogged_out . ht m
(which usually contains a “You’ve successfully logged out” message). However, you can call the view with an
extra argument, next _page, which will instruct the view to redirect after a logout.

Limiting Access to Logged-in Users

Of course, the reason we’re going through all this trouble is so we can limit access to parts of our site.

The simple, raw way to limit access to pages is to check request . user.is_aut henti cated() and redirect to a
login page:

from dj ango. http inport HttpResponseRedirect

def ny_view(request):
if not request.user.is_authenticated():
return Htt pResponseRedirect ('/1ogin/ ?next=%" % request. path)
#o...

or perhaps display an error message:
def ny_view(request):
if not request.user.is_authenticated():
return render _to_response(' myapp/login_error.htm")
...
As a shortcut, you can use the convenient | ogi n_r equi r ed decorator:

from dj ango. contrib. auth. decorators inport |ogin_required

@ ogi n_required

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

def ny_view(request):
#o...

| ogi n_required does the following:

= If the user isn’'t logged in, redirect to / account s/ | ogi n/ , passing the current absolute URL in the query
string as next , for example: / account s/ | ogi n/ ?next =/ pol | s/ 3/ .

= If the user is logged in, execute the view normally. The view code can then assume that the user is
logged in.

Limiting Access to Users Who Pass a Test

Limiting access based on certain permissions or some other test, or providing a different location for the login
view works essentially the same way.

The raw way is to run your test on r equest . user in the view directly. For example, this view checks to make
sure the user is logged in and has the permission pol | s. can_vot e (more about how permissions works
follows):

def vote(request):
if request.user.is_authenticated() and request.user.has _pern{' polls.can_vote')):
vote here
el se:
return HttpResponse("You can't vote in this poll.")

Again, Django provides a shortcut called user _passes_t est . It takes arguments and generates a specialized
decorator for your particular situation:

def user_can_vote(user):
return user.is_authenticated() and user.has_pern{"polls.can_vote")

@user _passes_text(user_can_vote, login_ url="/login/")
def vote(request):
Code here can assunme a |logged-in user with the correct pernission.

user _passes_t est takes one required argument: a callable that takes a User object and returns Tr ue if the
user is allowed to view the page. Note that user _passes_t est does not automatically check that the User is
authenticated; you should do that yourself.

In this example we’re also showing the second optional argument, | ogi n_ur | , which lets you specify the URL
for your login page (/ account s/ | ogi n/ by default).

Since it's a relatively common task to check whether a user has a particular permission, Django provides a
shortcut for that case: the perm ssi on_required() decorator. Using this decorator, the earlier example can be
written as follows:

from dj ango. contrib. auth. decorators inport perm ssion_required
@erm ssion_required(' polls.can_vote', login_url="/login/")

def vote(request):
#o...

Note that per m ssi on_required() also takes an optional | ogi n_ur| parameter, which also defaults to
"/accounts/login/'.

—— Limiting Access to Generic Views

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

One of the most frequently asked questions on the Django users list deals with limiting access to
a generic view. To pull this off, you’ll need to write a thin wrapper around the view and point your
URLconf to your wrapper instead of the generic view itself:

from dango. contri b. aut h. decorators inport |ogin_required
from dj ango. vi ews. generi c. date_based i nport object _detail

@ ogi n_required
def limted _object detail (*args, **kwargs):
return object _detail (*args, **kwargs)

You can, of course, replace | ogi n_r equi r ed with any of the other limiting decorators.

Managing Users, Permissions, and Groups

The easiest way by far to manage the auth system is through the admin interface. Chapter 6 discusses how to
use Django’s admin interface to edit users and control their permissions and access, and most of the time you’ll
just use that interface.

However, there are low-level APIs you can delve into when you need absolute control, and we discuss these in
the sections that follow.

Creating Users

Create users with the cr eat e_user helper function:

>>> from dj ango. contri b. aut h. nodel s i nport User

>>> user = User. objects.create_user(usernane='john',
emai | =' j | ennon@eat | es. com ,
passwor d=' gl ass oni on')

At this point, user is a User instance ready to be saved to the database (create_user () doesn’t actually call
save() itself). You can continue to change its attributes before saving, too:

>>> user.is_staff = True
>>> user.save()

Changing Passwords

You can change a password with set _password() :

>>> user = User. objects. get(usernanme='john")
>>> user.set _password(' goo goo goo joob')
>>> user. save()

Don’t set the passwor d attribute directly unless you know what you’re doing. The password is actually stored
as a salted hash and thus can’t be edited directly.

More formally, the passwor d attribute of a User object is a string in this format:
hasht ype$sal t $hash

That's a hash type, the salt, and the hash itself, separated by the dollar sign ($) character.

hasht ype is either shal (default) or nd5, the algorithm used to perform a one-way hash of the password. sal t
is a random string used to salt the raw password to create the hash, for example:

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

shal$al976%a36cc8chf 81742a8f b52e221aaeab48ed7f 58ab4

The User. set _password() and User.check_passwor d() functions handle the setting and checking of these
values behind the scenes.

Is a “Salted Hash” Some Kind of Drug?

No, a salted hash has nothing to do with marijuana; it’s actually a common way to securely store
passwords. A hash is a one-way cryptographic function—that is, you can easily compute the hash
of a given value, but it's nearly impossible to take a hash and reconstruct the original value.

If we stored passwords as plain text, anyone who got their hands on the password database would
instantly know everyone’s password. Storing passwords as hashes reduces the value of a
compromised database.

However, an attacker with the password database could still run a brute- force attack, hashing
millions of passwords and comparing those hashes against the stored values. This takes some
time, but less than you might think—computers are incredibly fast.

Worse, there are publicly available rainbow tables, or databases of precomputed hashes of
millions of passwords. With a rainbow table, an attacker can break most passwords in seconds.

Adding a salt—basically an initial random value—to the stored hash adds another layer of difficulty
to breaking passwords. Since salts differ from password to password, they also prevent the use of
a rainbow table, thus forcing attackers to fall back on a brute-force attack, itself made more
difficult by the extra entropy added to the hash by the salt.

While salted hashes aren’t absolutely the most secure way of storing passwords, they’re a good
middle ground between security and convenience.

Handling Registration

We can use these low-level tools to create views that allow users to sign up. Nearly every developer wants to
implement registration differently, so Django leaves writing a registration view up to you. Luckily, it's pretty
easy.

At its simplest, we could provide a small view that prompts for the required user information and creates those
users. Django provides a built-in form you can use for this purpose, which we’ll use in this example:

from dj ango inport oldforns as forns

from dj ango. http inport HttpResponseRedirect

from dj ango. shortcuts inport render_to_response

from dj ango. contrib.auth.forms inport UserCreationForm

def register(request):
form = UserCreationForm))

i f request.nethod == 'POST :
data = request. POST. copy()
errors = formget_validation_errors(data)
if not errors:
new_user = form save(data)
return Htt pResponseRedirect ("/books/")
el se:
data, errors = {}, {}

return render _to_response("registration/register.htm", {
"form : formns. For MW apper(form data, errors)

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

})

This form assumes a template named regi stration/register. htm . Here's an example of what that template
might look like:

{% extends "base.htm " %
{% block title %9 Create an account{% endbl ock %

{% bl ock content %
<hl>Create an account</hl>
<form action="." nmethod="post">
{%if formerror_dict %
<p class="error">Pl ease correct the errors bel ow </ p>
{%endif %

{%if formusernane.errors %
{{ formusernanme. htm _error_list }}
{% endif %
<l abel for="id usernanme">Usernane: </l abel > {{ formusernane }}

{%if formpasswordl.errors %
{{ formpasswordl. htm _error _list }}
{%endif %
<l abel for="id_passwordl">Password: {{ form passwordl }}

{%if formpassword2.errors %
{{ formpassword2. htm _error _list }}
{% endif %
<l abel for="id_password2">Password (again): {{ form password2 }}

<i nput type="submit" value="Create the account" />

</ | abel >
{% endbl ock %

Note

dj ango. contri b. aut h. forns. User Cr eat i onFor mis, at the time of publication, an oldforms Form.
See http://www.djangoproject.com/documentation/0.96/forms/ for details on oldforms. The
transition to newforms, as covered in Chapter 7, will be completed in the near future.

Using Authentication Data in Templates

The current logged-in user and his or her permissions are made available in the template context when you
use Request Cont ext (see Chapter 10).

Note

Technically, these variables are only made available in the template context if you use

Request Cont ext and your TEMPLATE_CONTEXT_PROCESSORS setting contains

"dj ango. core. cont ext _processors. aut h", which is the default. Again, see Chapter 10 for more
information.

When using Request Cont ext , the current user (either a User instance or an AnonynousUser instance) is stored
in the template variable {{ user }}:

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

http://www.djangoproject.com/documentation/0.96/forms/

Chapter 12: Sessions, Users, and Registration

{% if user.is_authenticated %

<p>Wel cone, {{ user.usernane }}. Thanks for |ogging in.</p>
{% el se %

<p>Wel conme, new user. Please log in.</p>
{%endif %

This user’s permissions are stored in the template variable {{ perns }}. This is a template-friendly proxy to a
couple of permission methods described shortly.

There are two ways you can use this per ms object. You can use something like {{ perns.polls }} to check if
the user has any permissions for some given application, or you can use something like
{{ perms.polls.can_vote }} to check if the user has a specific permission.

Thus, you can check permissions in template {% i f % statements:

{%if perns.polls %

<p>You have perm ssion to do sonething in the polls app.</p>

{%if perns.polls.can_vote %

<p>You can vote!</p>

{%endif %
{% el se %

<p>You don't have permi ssion to do anything in the polls app.</p>
{%endif %

The Other Bits: Permissions, Groups, Messages, and Profiles

There are a few other bits of the authentication framework that we’ve only dealt with in passing. We'll take a
closer look at them in the following sections.

Permissions

Permissions are a simple way to “mark” users and groups as being able to perform some action. They are
usually used by the Django admin site, but you can easily use them in your own code.

The Django admin site uses permissions as follows:

= Access to view the “add” form, and add an object is limited to users with the add permission for that type
of object.

= Access to view the change list, view the “change” form, and change an object is limited to users with the
change permission for that type of object.

= Access to delete an object is limited to users with the delete permission for that type of object.

Permissions are set globally per type of object, not per specific object instance. For example, it's possible to
say “Mary may change news stories,” but it's not currently possible to say “Mary may change news stories, but
only the ones she created herself” or “Mary may only change news stories that have a certain status,
publication date, or ID.”

These three basic permissions—add, change, and delete—are automatically created for each Django model that
has a cl ass Adni n. Behind the scenes, these permissions are added to the aut h_per n ssi on database table
when you run manage. py syncdb.

These permissions will be of the form " <app>. <acti on>_<obj ect _nanme>". That is, if you have a pol | s
application with a Choi ce model, you’ll get permissions named " pol | s. add_choi ce",
"pol | s. change_choi ce", and "pol | s. del et e_choi ce".

Note that if your model doesn’t have cl ass Adnmi n set when you run syncdb, the permissions won’t be
created. If you initialize your database and add cl ass Adnm n to models after the fact, you’ll need to run

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

syncdb again to create any missing permissions for your installed applications.

You can also create custom permissions for a given model object using the per ni ssi ons attribute on Met a.
This example model creates three custom permissions:

class USCitizen(nodel s. Mbdel):
#o...
cl ass Meta:
perm ssions = (

Perm ssion identifier human- r eadabl e perni ssion nane
("can_drive", "Can drive"),

("can_vote", "Can vote in elections"),
("can_drink", "Can drink al cohol"),

This only creates those extra permissions when you run syncdb; it's up to you to check for these permissions
in your views.

Just like users, permissions are implemented in a Django model that lives in dj ango. contri b. aut h. nodel s.
This means that you can use Django’s database API to interact directly with permissions if you like.

Groups

Groups are a generic way of categorizing users so you can apply permissions, or some other label, to those
users. A user can belong to any number of groups.

A user in a group automatically has the permissions granted to that group. For example, if the group
Site editors has the permission can_edi t _honme_page, any user in that group will have that permission.

Groups are also a convenient way to categorize users to give them some label, or extended functionality. For
example, you could create a group ' Speci al users' , and you could write code that could, say, give those
users access to a members-only portion of your site, or send them members-only email messages.

Like users, the easiest way to manage groups is through the admin interface. However, groups are also just
Django models that live in dj ango. contri b. aut h. nodel s, so once again you can always use Django’s
database APIs to deal with groups at a low level.

Messages
The message system is a lightweight way to queue messages for given users. A message is associated with a

User . There’s no concept of expiration or timestamps.

Messages are used by the Django admin interface after successful actions. For example, when you create an
object, you’ll notice a “The object was created successfully” message at the top of the admin page.

You can use the same API to queue and display messages in your own application. The API is simple:

= To create a new message, Use user. nessage_set . creat e(nessage=' nessage_text').

= To retrieve/delete messages, use user. get _and_del et e_nessages() , which returns a list of Message
objects in the user’s queue (if any) and deletes the messages from the queue.

In this example view, the system saves a message for the user after creating a playlist:

def create playlist(request, songs):
Create the playlist with the given songs.
#o...
request . user. message_set. creat e(
nmessage="Your playlist was added successfully."

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

return render _to_response("playlists/create. htm ™,
cont ext i nst ance=Request Cont ext (request))

When you use Request Cont ext , the current logged-in user and his or her messages are made available in the
template context as the template variable {{ nessages }}. Here's an example of template code that displays
messages:

{%if nessages %

{% for nessage in nessages %
{{ nessage }}
{% endfor %

</ ul >

{% endif %

Note that Request Cont ext calls get _and_del et e_nessages behind the scenes, so any messages will be
deleted even if you don’t display them.

Finally, note that this messages framework only works with users in the user database. To send messages to
anonymous users, use the session framework directly.

Profiles

The final piece of the puzzle is the profile system. To understand what profiles are all about, let’s first look at
the problem.

In a nutshell, many sites need to store more user information than is available on the standard User object. To
compound the problem, most sites will have different “extra” fields. Thus, Django provides a lightweight way of
defining a “profile” object that’s linked to a given user. This profile object can differ from project to project,
and it can even handle different profiles for different sites served from the same database.

The first step in creating a profile is to define a model that holds the profile information. The only requirement
Django places on this model is that it have a unique For ei gnKey to the User model; this field must be named
user . Other that that, you can use any other fields you like. Here’s a strictly arbitrary profile model:

from dj ango. db inport nodels
from dj ango. contri b. auth. rodel s i nport User

class MySiteProfil e(nodel s. Model) :
This is the only required field
user = nodel s. Forei gnKey(User, uni que=True)

The rest is conpletely up to you...

favorite band = nodel s. Char Fi el d(maxl engt h=100, bl ank=Tr ue)
favorite cheese = nodel s. Char Fi el d(maxl engt h=100, bl ank=Tr ue)
| ucky _nunmber = nodel s. | ntegerField()

Next, you’ll need to tell Django where to look for this profile object. You do that by setting the
AUTH_PROFI LE_MODULE setting to the identifier for your model. So, if your model lives in an application called
nyapp, you’d put this in your settings file:

AUTH PROFI LE_MODULE = "nyapp. nysi teprofile"

Once that’s done, you can access a user’s profile by calling user. get _profil e() . This function could raise a

Si teProfil eNot Avai | abl e exception if AUTH_PROFI LE_MODULE isn’t defined, or it could raise a DoesNot Exi st
exception if the user doesn’t have a profile already (you’ll usually catch that exception and create a new profile
at that time).

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

Chapter 12: Sessions, Users, and Registration

What’s Next

Yes, the session and authorization system is a lot to absorb. Most of the time you won’t need all the features
described in this chapter, but when you need to allow complex interactions between users, it’s good to have all
that power available.

In the next chapter, we’ll take a look at a piece of Django that builds on top of this session/user system: the
comments application. It allows you to easily attach comments—from anonymous or authenticated users—to
arbitrary objects. Onward and upward!

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter12/[2009.01.07. 10:40:44]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 13: Caching

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 13: Caching

Static Web sites, in which simple files are served directly to the Web, scale like crazy. But a fundamental
tradeoff in dynamic Web sites is, well, they’re dynamic. Each time a user requests a page, the Web server
makes all sorts of calculations—from database queries, to template rendering, to business logic— to create the
page that your site’s visitor sees. From a processing-overhead perspective, this is quite expensive.

For most Web applications, this overhead isn’'t a big deal. Most Web applications aren’t washingtonpost.com or
Slashdot; they're simply small- to medium-sized sites with so-so traffic. But for medium- to high-traffic sites,
it’'s essential to cut as much overhead as possible. That's where caching comes in.

To cache something is to save the result of an expensive calculation so that you don’t have to perform the
calculation next time. Here’s some pseudocode explaining how this would work for a dynamically generated
Web page:

given a URL, try finding that page in the cache
if the page is in the cache:
return the cached page
el se:
generate the page
save the generated page in the cache (for next tine)
return the generated page

Django comes with a robust cache system that lets you save dynamic pages so they don’'t have to be
calculated for each request. For convenience, Django offers different levels of cache granularity. You can cache
the response of specific views, you can cache only the pieces that are difficult to produce, or you can cache
your entire site.

Django also works well with “upstream” caches, such as Squid (http://www.squid-cache.org/) and browser-
based caches. These are the types of caches that you don’t directly control but to which you can provide hints
(via HTTP headers) about which parts of your site should be cached, and how.

Read on to discover how to use Django’s caching system. When your site gets Slashdotted you’ll be happy you
understand this material.

Setting Up the Cache

The cache system requires a small amount of setup. Namely, you have to tell it where your cached data should
live, whether in a database, on the filesystem, or directly in memory. This is an important decision that affects
your cache’s performance (yes, some cache types are faster than others). In-memory caching will generally be
much faster than filesystem or database caching, because it lacks the overhead of hitting the filesystem or
database.

Your cache preference goes in the CACHE_BACKEND setting in your settings file. If you use caching and do not
specify CACHE_BACKEND, Django will use si npl e: /// by default. The following sections explain all available
values for CACHE_BACKEND.

Memcached

By far the fastest, most efficient type of cache available to Django, Memcached is an entirely memory-based

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257
http://www.squid-cache.org/

Chapter 13: Caching

cache framework originally developed to handle high loads at LiveJournal (http://www.livejournal.com/) and
subsequently open-sourced by Danga Interactive (http://danga.com/). It's used by sites such as Slashdot and
Wikipedia to reduce database access and dramatically increase site performance.

Memcached is available for free at http://danga.com/memcached/. It runs as a daemon and is allotted a
specified amount of RAM. Its primary feature is to provide an interface—a super-lightning-fast interface—for
adding, retrieving, and deleting arbitrary data in the cache. All data is stored directly in memory, so there’s no
overhead of database or filesystem usage.

After installing Memcached itself, you’ll need to install the Memcached Python bindings, which are not bundled
with Django directly. These bindings are in a single Python module, nentache. py, which is available at
http://www.tummy.com/Community/software/python-memcached/.

To use Memcached with Django, set CACHE_BACKEND to nentached: //i p: port/, where i p is the IP address of
the Memcached daemon and port is the port on which Memcached is running.

In this example, Memcached is running on localhost (127.0.0.1) port 11211:
CACHE _BACKEND = ' nentached://127.0.0.1:11211/"

One excellent feature of Memcached is its ability to share cache over multiple servers. This means you can run
Memcached daemons on multiple machines, and the program will treat the group of machines as a single
cache, without the need to duplicate cache values on each machine. To take advantage of this feature with
Django, include all server addresses in CACHE_BACKEND, separated by semicolons.

In this example, the cache is shared over Memcached instances running on the IP addresses 172.19.26.240
and 172.19.26.242, both of which are on port 11211:

CACHE_BACKEND = 'nenctached://172.19. 26. 240: 11211; 172. 19. 26. 242: 11211/"

In the following example, the cache is shared over Memcached instances running on the IP addresses
172.19.26.240 (port 11211), 172.19.26.242 (port 11212), and 172.19.26.244 (port 11213):

CACHE_BACKEND =
"mencached: //172. 19. 26. 240: 11211; 172. 19. 26. 242: 11212; 172. 19. 26. 244: 11213/"'

A final point about Memcached is that memory-based caching has one important disadvantage. Because the
cached data is stored only in memory, the data will be lost if your server crashes. Clearly, memory isn’t
intended for permanent data storage, so don’t rely on memory-based caching as your only data storage.
Without a doubt, none of the Django caching back-ends should be used for permanent storage—they’re all
intended to be solutions for caching, not storage—but we point this out here because memory-based caching is
particularly temporary.

Database Caching

To use a database table as your cache back-end, create a cache table in your database and point Django’s
cache system at that table.

First, create a cache table by running this command:
pyt hon nmanage. py createcachetabl e [cache_tabl e nane]

where [cache_t abl e_nane] is the name of the database table to create. This name can be whatever you want,
as long as it’s a valid table name that’s not already being used in your database. This command creates a
single table in your database that is in the proper format Django’s database-cache system expects.

Once you’ve created that database table, set your CACHE_BACKEND setting to "db: //t abl enane" , where
t abl enane is the name of the database table. In this example, the cache table’s name is ny_cache_t abl e:

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

http://www.livejournal.com/
http://danga.com/
http://danga.com/memcached/
http://www.tummy.com/Community/software/python-memcached/

Chapter 13: Caching

CACHE _BACKEND = 'db://my_cache_tabl e’

The database caching back-end uses the same database as specified in your settings file. You can’t use a
different database back-end for your cache table.

Filesystem Caching

To store cached items on a filesystem, use the "file://" cache type for CACHE_BACKEND, specifying the
directory on your filesystem that should store the cached data.

For example, to store cached data in / var/t np/ dj ango_cache, use this setting:
CACHE BACKEND = 'file:///var/tnp/django_cache'

Note that there are three forward slashes toward the beginning of the preceding example. The first two are for
file://, and the third is the first character of the directory path, / var/t np/ dj ango_cache. If you're on
Windows, put the drive letter after the file://, like so:: file://c:/foolbar.

The directory path should be absolute—that is, it should start at the root of your filesystem. It doesn’t matter
whether you put a slash at the end of the setting.

Make sure the directory pointed to by this setting exists and is readable and writable by the system user under
which your Web server runs. Continuing the preceding example, if your server runs as the user apache, make
sure the directory / var/ t np/ dj ango_cache exists and is readable and writable by the user apache.

Each cache value will be stored as a separate file whose contents are the cache data saved in a serialized
(“pickled”) format, using Python’s pi ckl e module. Each file’s name is the cache key, escaped for safe
filesystem use.

Local-Memory Caching

If you want the speed advantages of in-memory caching but don’t have the capability of running Memcached,
consider the local-memory cache back-end. This cache is per-process and thread-safe, but it isn’t as efficient
as Memcached due to its simplistic locking and memory allocation strategies.

To use it, set CACHE_ BACKEND to ' | ocnrem // /", for example:

CACHE BACKEND = 'l ocrmem///"'

Simple Caching (for Development)

A simple, single-process memory cache is available as ' sinple:///"' , for example:
CACHE BACKEND = 'sinple:///"

This cache merely saves cached data in process, which means it should be used only in development or testing
environments.

Dummy Caching (for Development)

Finally, Django comes with a “dummy” cache that doesn’t actually cache; it just implements the cache
interface without doing anything.

This is useful if you have a production site that uses heavy-duty caching in various places and a
development/test environment on which you don’t want to cache. In that case, set CACHE BACKEND to
"dummy:///" in the settings file for your development environment, for example:

CACHE_BACKEND = ' dunmy:///"'

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

Chapter 13: Caching

As a result, your development environment won’t use caching, but your production environment still will.

CACHE_BACKEND Arguments

Each cache back-end may take arguments. They’re given in query-string style on the CACHE_BACKEND setting.
Valid arguments are as follows:

= tineout : The default timeout, in seconds, to use for the cache. This argument defaults to 300 seconds (5
minutes).

= max_entries: For the simple, local-memory, and database back-ends, the maximum number of entries
allowed in the cache before old values are deleted. This argument defaults to 300.

= cull _frequency: The ratio of entries that are culled when nax_entri es is reached. The actual ratio is
1/ cul |l _frequency, so set cul |l _frequency=2 to cull half of the entries when nax_entri es is reached.

A value of 0 for cul | _frequency means that the entire cache will be dumped when nmax_entries is

reached. This makes culling much faster at the expense of more cache misses. This argument defaults to
3.

In this example, ti nmeout is set to 60:

CACHE _BACKEND = "| ocnmem /// ?ti nmeout =60"

In this example, ti neout is 30 and max_entries is 400:
CACHE_BACKEND = "l ocrmem /// ?ti meout =30&rax_entri es=400"

Invalid arguments are silently ignored, as are invalid values of known arguments.

The Per-Site Cache

Once you’'ve specified CACHE_BACKEND, the simplest way to use caching is to cache your entire site. This means
each page that doesn’t have GET or POST parameters will be cached for a specified amount of time the first
time it’s requested.

To activate the per-site cache, just add ' dj ango. m ddl ewar e. cache. CacheM ddl ewar e' to your
M DDLEWARE_CLASSES setting, as in this example:

M DDLEWARE_CLASSES = (

' dj ango. m ddl ewar e. cache. CacheM ddl ewar e’ ,
' dj ango. m ddl ewar e. conmon. CommonM ddl ewar e' ,

Note

The order of M DDLEWARE CLASSES matters. See the section “Order of MIDDLEWARE_CLASSES”
later in this chapter.
Then, add the following required settings to your Django settings file:

= CACHE_M DDLEWARE_SECONDS: The number of seconds each page should be cached.

= CACHE_M DDLEWARE_KEY_PREFI X: If the cache is shared across multiple sites using the same Django
installation, set this to the name of the site, or some other string that is unique to this Django instance, to
prevent key collisions. Use an empty string if you don’t care.

The cache middleware caches every page that doesn’'t have GET or POST parameters. That is, if a user

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

Chapter 13: Caching

requests a page and passes GET parameters in a query string, or passes POST parameters, the middleware will
not attempt to retrieve a cached version of the page. If you intend to use the per-site cache, keep this in mind
as you design your application; don’t use URLs with query strings, for example, unless it is acceptable for your
application not to cache those pages.

The cache middleware supports another setting, CACHE_M DDLEWARE_ANONYMOUS_ONLY. If you've defined this
setting, and it’'s set to Tr ue, then the cache middleware will only cache anonymous requests (i.e., those
requests made by a non-logged-in user). This is a simple and effective way of disabling caching for any user-
specific pages, such as Django’s admin interface. Note that if you use CACHE_M DDLEWARE_ANONYMOUS_ONLY,
you should make sure you’ve activated Aut henti cati onM ddl ewar e and that Aut henti cati onM ddl ewar e
appears before CacheM ddl ewar e in your M DDLEWARE_CLASSES.

Finally, note that CacheM ddl ewar e automatically sets a few headers in each Ht t pResponse:

= |t sets the Last - Modi fi ed header to the current date/time when a fresh (uncached) version of the page
is requested.
= |t sets the Expi r es header to the current date/time plus the defined CACHE_M DDLEWARE_SECONDS.

= |t sets the Cache- Control header to give a maximum age for the page, again from the
CACHE_M DDLEWARE_SECONDS setting.

The Per-View Cache

A more granular way to use the caching framework is by caching the output of individual views. This has the
same effects as the per-site cache (including the omission of caching on requests with GET and POST
parameters). It applies to whichever views you specify, rather than the whole site.

Do this by using a decorator, which is a wrapper around your view function that alters its behavior to use
caching. The per-view cache decorator is called cache_page and is located in the
dj ango. vi ews. decor at or s. cache module, for example:

from dj ango. vi ews. decor at ors. cache i nmport cache_page

def ny_view(request, param:
oo,
ny_vi ew = cache_page(nmy_view, 60 * 15)

Alternatively, if you're using Python 2.4 or greater, you can use decorator syntax. This example is equivalent
to the preceding one:

from dj ango. vi ews. decor at ors. cache i nport cache_ page

@ache_page(60 * 15)
def ny_view(request, param:
#o...

cache_page takes a single argument: the cache timeout, in seconds. In the preceding example, the result of
the ny_vi ew() view will be cached for 15 minutes. (Note that we’'ve written it as 60 * 15 for the purpose of
readability. 60 * 15 will be evaluated to 900—that is, 15 minutes multiplied by 60 seconds per minute.)

The per-view cache, like the per-site cache, is keyed off of the URL. If multiple URLs point at the same view,
each URL will be cached separately. Continuing the ny_vi ew example, if your URLconf looks like this:

urlpatterns = ('',
(r'~Moo/(\d{21,2})/%$", nmy_view,

then requests to / f oo/ 1/ and / f oo/ 23/ will be cached separately, as you may expect. But once a particular

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

Chapter 13: Caching

URL (e.g., / f oo/ 23/) has been requested, subsequent requests to that URL will use the cache.

Specifying Per-View Cache in the URLconf

The examples in the previous section have hard-coded the fact that the view is cached, because cache_page
alters the ny_vi ew function in place. This approach couples your view to the cache system, which is not ideal
for several reasons. For instance, you might want to reuse the view functions on another, cacheless site, or
you might want to distribute the views to people who might want to use them without being cached. The
solution to these problems is to specify the per-view cache in the URLconf rather than next to the view
functions themselves.

Doing so is easy: simply wrap the view function with cache_page when you refer to it in the URLconf. Here’s
the old URLconf from earlier:

urlpatterns = ('",
(r'~Moo/(\d{1,2})/$, my_view,

Here’s the same thing, with ny_vi ew wrapped in cache_page:
from dj ango. vi ews. decor at ors. cache i nmport cache_page

url patterns = ('",
(r'~foo/(\d{1,2})/$, cache_page(ny_view, 60 * 15)),

If you take this approach, don’t forget to import cache_page within your URLconf.

The Low-Level Cache API

Sometimes, caching an entire rendered page doesn’t gain you very much and is, in fact, inconvenient overkill.

Perhaps, for instance, your site includes a view whose results depend on several expensive queries, the results
of which change at different intervals. In this case, it would not be ideal to use the full-page caching that the
per-site or per-view cache strategies offer, because you wouldn’t want to cache the entire result (since some
of the data changes often), but you’d still want to cache the results that rarely change.

For cases like this, Django exposes a simple, low-level cache API, which lives in the module

dj ango. core. cache. You can use the low-level cache API to store objects in the cache with any level of
granularity you like. You can cache any Python object that can be pickled safely: strings, dictionaries, lists of
model objects, and so forth. (Most common Python objects can be pickled; refer to the Python documentation
for more information about pickling.)

Here’s how to import the API:

>>> from dj ango. core. cache inport cache

The basic interface is set (key, val ue, tineout_seconds) and get (key) :
>>> cache.set (' my_key', 'hello, world!', 30)

>>> cache. get (' my_key')

"hello, world!'

The ti neout _seconds argument is optional and defaults to the ti meout argument in the CACHE_BACKEND
setting explained earlier.

If the object doesn’t exist in the cache, or the cache back-end is unreachable, cache. get () returns None:

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

Chapter 13: Caching

Wait 30 seconds for 'ny_key' to expire...

>>> cache. get (' ny_key')
None

>>> cache. get (' sone_unset _key')
None

We advise against storing the literal value None in the cache, because you won't be able to distinguish between
your stored None value and a cache miss signified by a return value of None.

cache. get () can take a def aul t argument. This specifies which value to return if the object doesn’t exist in
the cache:

>>> cache. get (' my_key', 'has expired')
"has expired'

To retrieve multiple cache values in a single shot, use cache. get _nany() . If possible for the given cache back-
end, get _many() will hit the cache only once, as opposed to hitting it once per cache key. get _many() returns
a dictionary with all of the keys you asked for that exist in the cache and haven’t expired:

>>> cache.set('a', 1)

>>> cache.set('b', 2)

>>> cache.set('c', 3)

>>> cache.get_many(['a', 'b', 'c'])
{*a': 1, 'b': 2, '¢': 3}

If a cache key doesn’t exist or is expired, it won’t be included in the dictionary. The following is a continuation
of the example:

>>> cache.get_nmany(['a', 'b', 'c', 'd'])
{*a': 1, 'b': 2, 'c': 3}

Finally, you can delete keys explicitly with cache. del et e() . This is an easy way of clearing the cache for a
particular object:

>>> cache. del ete('a')

cache. del et e() has no return value, and it works the same way whether or not a value with the given cache
key exists.

Upstream Caches

So far, this chapter has focused on caching your own data. But another type of caching is relevant to Web
development, too: caching performed by upstream caches. These are systems that cache pages for users even
before the request reaches your Web site.

Here are a few examples of upstream caches:

= Your ISP may cache certain pages, so if you requested a page from http://example.com/, your ISP would
send you the page without having to access example.com directly. The maintainers of example.com have
no knowledge of this caching; the ISP sits between example.com and your Web browser, handling all of
the caching transparently.

= Your Django Web site may sit behind a proxy cache, such as Squid Web Proxy Cache (http://www.squid-
cache.org/), that caches pages for performance. In this case, each request first would be handled by the
proxy, and it would be passed to your application only if needed.

= Your Web browser caches pages, too. If a Web page sends out the appropriate headers, your browser will

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

http://example.com/
http://www.squid-cache.org/
http://www.squid-cache.org/

Chapter 13: Caching

use the local cached copy for subsequent requests to that page, without even contacting the Web page
again to see whether it has changed.

Upstream caching is a nice efficiency boost, but there’s a danger to it. The content of many Web pages differs
based on authentication and a host of other variables, and cache systems that blindly save pages based purely
on URLs could expose incorrect or sensitive data to subsequent visitors to those pages.

For example, say you operate a Web e-mail system, and the contents of the “inbox” page obviously depend on
which user is logged in. If an ISP blindly cached your site, then the first user who logged in through that ISP
would have his or her user-specific inbox page cached for subsequent visitors to the site. That’s not cool.

Fortunately, HTTP provides a solution to this problem. A number of HTTP headers exist to instruct upstream
caches to differ their cache contents depending on designated variables, and to tell caching mechanisms not to
cache particular pages. We’ll look at some of these headers in the sections that follow.

Using Vary Headers

The Vary header defines which request headers a cache mechanism should take into account when building its
cache key. For example, if the contents of a Web page depend on a user’s language preference, the page is
said to “vary on language.”

By default, Django’s cache system creates its cache keys using the requested path (e.g.,

"/ stories/ 2005/ jun/ 23/ bank_robbed/"). This means every request to that URL will use the same cached
version, regardless of user-agent differences such as cookies or language preferences. However, if this page
produces different content based on some difference in request headers—such as a cookie, or a language, or a
user-agent—you’ll need to use the Vary header to tell caching mechanisms that the page output depends on
those things.

To do this in Django, use the convenient vary_on_header s view decorator, like so:
from dj ango. vi ews. decorators.vary inport vary on_headers

Python 2.3 syntax.
def ny_view(request):
#o...
ny_view = vary_on_headers(ny_view, 'User-Agent')

Python 2.4+ decorator syntax.
@ary_on_headers(' User - Agent ')
def rmy_view(request):

...

In this case, a caching mechanism (such as Django’s own cache middleware) will cache a separate version of
the page for each unique user-agent.

The advantage to using the vary_on_header s decorator rather than manually setting the Vary header (using

something like response[' Vary'] = 'user-agent') is that the decorator adds to the Vary header (which
may already exist), rather than setting it from scratch and potentially overriding anything that was already in
there.

You can pass multiple headers to vary_on_headers() :
@ary_on_headers(' User-Agent', ' Cookie')
def ny_vi ew(request):

#o.o..

This tells upstream caches to vary on both, which means each combination of user-agent and cookie will get
its own cache value. For example, a request with the user-agent Mbzi | | a and the cookie value f oo=bar will be

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

Chapter 13: Caching

considered different from a request with the user-agent Mozi | | a and the cookie value f oo=ham

Because varying on cookie is so common, there’s a vary_on_cooki e decorator. These two views are
equivalent:

@ary_on_cooki e
def ny_viewrequest):
#o...

@ary_on_header s(' Cooki e')
def ny_view(request):
#oo..

The headers you pass to vary_on_header s are not case sensitive; "User - Agent" is the same thing as
"user - agent" .

You can also use a helper function, dj ango. uti |l s. cache. pat ch_vary_header s, directly. This function sets, or
adds to, the Vary header , for example:

from dj ango. utils.cache inport patch _vary headers

def ny_view(request):
#o...
response = render_to_response('tenpl ate_name', context)
pat ch_vary_ headers(response, ['Cookie'])
return response

pat ch_vary_headers takes an Htt pResponse instance as its first argument and a list/tuple of case-insensitive
header names as its second argument.

Other Cache Headers

Other problems with caching are the privacy of data and the question of where data should be stored in a
cascade of caches.

A user usually faces two kinds of caches: his or her own browser cache (a private cache) and his or her
provider’s cache (a public cache). A public cache is used by multiple users and controlled by someone else.
This poses problems with sensitive data—you don’t want, say, your bank account number stored in a public
cache. So Web applications need a way to tell caches which data is private and which is public.

The solution is to indicate a page’s cache should be “private.” To do this in Django, use the cache_contr ol
view decorator:

from dj ango. vi ews. decor at ors. cache inport cache_control

@ache_control (privat e=True)
def ny_view(request):
#o...

This decorator takes care of sending out the appropriate HTTP header behind the scenes.

There are a few other ways to control cache parameters. For example, HTTP allows applications to do the
following:

= Define the maximum time a page should be cached.

= Specify whether a cache should always check for newer versions, only delivering the cached content when
there are no changes. (Some caches might deliver cached content even if the server page changed, simply
because the cache copy isn’t yet expired.)

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

Chapter 13: Caching

In Django, use the cache_control view decorator to specify these cache parameters. In this example,
cache_control tells caches to revalidate the cache on every access and to store cached versions for, at most,
3,600 seconds:

from dj ango. vi ews. decor at ors. cache inport cache_control
@ache_control (rmust _reval i dat e=True, max_age=3600)
def ny_view(request):

Any valid Cache- Control HTTP directive is valid in cache_control () . Here’s a full list:

= public=True

= private=True

= no_cache=True

= no_transform=True

= nust_reval i date=True
= proxy_revalidate=True

= NMAX_age=num seconds

s_naxage=num seconds

Tip

For explanation of Cache- Control HTTP directives, see the specification at
http://www.w3.org/Protocols/rfc2616/rfc2616-secl4.html#secl4.9.

Note

The caching middleware already sets the cache header’s max- age with the value of the
CACHE_M DDLEWARE_SETTI NGS setting. If you use a custom max_age in a cache_control decorator,
the decorator will take precedence, and the header values will be merged correctly.)

Other Optimizations

Django comes with a few other pieces of middleware that can help optimize your applications’ performance:

= dj ango. mi ddl ewar e. htt p. Condi ti onal Get M ddl ewar e adds support for modern browsers to conditionally
GET responses based on the ETag and Last - Modi fi ed headers.

= dj ango. nmi ddl ewar e. gzi p. GZi pM ddl ewar e compresses responses for all moderns browsers, saving
bandwidth and transfer time.

Order of MIDDLEWARE_CLASSES

If you use CacheM ddl ewar e, it's important to put it in the right place within the M DDLEWARE _CLASSES setting,
because the cache middleware needs to know the headers by which to vary the cache storage.

Put the CacheM ddl ewar e after any middlewares that might add something to the Vary header, including the
following:

= Sessi onM ddl ewar e, which adds Cooki e

= &Zi pM ddl ewar e, which adds Accept - Encodi ng

What’s Next?

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

Chapter 13: Caching

Django ships with a number of “contrib” packages—cool, optional features. We’ve already covered a few of the:
the admin system (Chapter 6) and the session/user framework (Chapter 11).

The next chapter covers the rest of the “contributed” subframeworks. There’s a lot of cool tools available; you
won’t want to miss any of them.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter13/[2009.01.07. 10:40:53]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 14: Other Contributed Subframeworks

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 14: Other Contributed Subframeworks

One of the many strengths of Python is its “batteries included” philosophy: when you install Python, it comes
with a large standard library of packages that you can start using immediately, without having to download
anything else. Django aims to follow this philosophy, and it includes its own standard library of add-ons useful
for common Web development tasks. This chapter covers that collection of add-ons.

The Django Standard Library

Django’s standard library lives in the package dj ango. contri b. Within each subpackage is a separate piece of
add-on functionality. These pieces are not necessarily related, but some dj ango. contri b subpackages may
require other ones.

There’s no hard requirement for the types of functionality in dj ango. contri b. Some of the packages include
models (and hence require you to install their database tables into your database), but others consist solely of
middleware or template tags.

The single characteristic the dj ango. contri b packages have in common is this: if you were to remove the

dj ango. contri b package entirely, you could still use Django’s fundamental features with no problems. When
the Django developers add new functionality to the framework, they use this rule of thumb in deciding whether
the new functionality should live in dj ango. contri b or elsewhere.

dj ango. contri b consists of these packages:

= adm n: The automatic admin site. See Chapters 6 and 18.
= aut h: Django’s authentication framework. See Chapter 12.
= coment s: A comments application. This application is currently under heavy development and thus

couldn’t be covered fully in time for this book’s publication. Check the Django Web site for the latest
information about the comments application.

= contenttypes: A framework for hooking into “types” of content, where each installed Django model is a
separate content type. This framework is used internally by other “contrib” applications and is mostly
intended for very advanced Django developers. Those developers should find out more about this
application by reading the source code in dj ango/ contri b/ contenttypes/.

= csrf: Protection against Cross-Site Request Forgery (CSRF). See the later section titled “CSRF
Protection.”

= flat pages: A framework for managing simple “flat” HTML content in a database. See the later section
titled “Flatpages.”

= humani ze: A set of Django template filters useful for adding a “human touch” to data. See the later
section titled “Humanizing Data.”

= nmarkup: A set of Django template filters that implement a nhumber of common markup languages. See the
later section titled “Markup Filters.”

= redirects: A framework for managing redirects. See the later section titled “Redirects.”
= sessions: Django’s session framework. See Chapter 12.
= sitemaps: A framework for generating sitemap XML files. See Chapter 11.

= sites: A framework that lets you operate multiple Web sites from the same database and Django
installation. See the next section, “Sites.”

= syndi cation: A framework for generating syndication feeds in RSS and Atom. See Chapter 11.

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 14: Other Contributed Subframeworks

The rest of this chapter goes into detail about each dj ango. contri b package that we haven't yet covered in
this book.

Sites

Django’s sites system is a generic framework that lets you operate multiple Web sites from the same database
and Django project. This is an abstract concept, and it can be tricky to understand, so we’ll start with a couple
of scenarios where it would be useful.

Scenario 1: Reusing Data on Multiple Sites

As we explained in Chapter 1, the Django-powered sites LIWorld.com and Lawrence.com are operated by the
same news organization: the Lawrence Journal-World newspaper in Lawrence, Kansas. LJWorld.com focuses on
news, while Lawrence.com focuses on local entertainment. But sometimes editors want to publish an article on
both sites.

The brain-dead way of solving the problem would be to use a separate database for each site and to require
site producers to publish the same story twice: once for LJWorld.com and again for Lawrence.com. But that’s
inefficient for site producers, and it's redundant to store multiple copies of the same story in the database.

The better solution? Both sites use the same article database, and an article is associated with one or more
sites via a many-to-many relationship. The Django sites framework provides the database table to which
articles can be related. It’s a hook for associating data with one or more “sites.”

Scenario 2: Storing Your Site Name/Domain in One Place

LJWorld.com and Lawrence.com both have e-mail alert functionality, which lets readers sign up to get
notifications when news happens. It's pretty basic: a reader signs up on a Web form, and he immediately gets
an e-mail saying, “Thanks for your subscription.”

It would be inefficient and redundant to implement this signup-processing code twice, so the sites use the
same code behind the scenes. But the “Thank you for your subscription” notice needs to be different for each
site. By using Si t e objects, we can abstract the thank-you notice to use the values of the current site’s nane
(e.g., ' LIJWorld. cont) and donmai n (e.g., " www. | j worl d. com).

The Django sites framework provides a place for you to store the nane and donei n for each site in your Django
project, which means you can reuse those values in a generic way.

How to Use the Sites Framework

The sites framework is more a series of conventions than a framework. The whole thing is based on two simple
concepts:

= The Site model, found in dj ango. contri b. si tes, has domai n and nane fields.

= The SI TE | D setting specifies the database ID of the Si t e object associated with that particular settings
file.

How you use these two concepts is up to you, but Django uses them in a couple of ways automatically via
simple conventions.

To install the sites application, follow these steps:

1. Add 'django.contrib.sites' to your | NSTALLED APPS.
2. Run the command nanage. py syncdb to install the dj ango_si t e table into your database.

3. Add one or more Sit e objects, either through the Django admin site or via the Python API. Create a Site
object for each site/domain that this Django project powers.

4. Define the SI TE_| D setting in each of your settings files. This value should be the database ID of the Site

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

Chapter 14: Other Contributed Subframeworks

object for the site powered by that settings file.

The Sites Framework’s Capabilities

The sections that follow describe the various things you can do with the sites framework.

Reusing Data on Multiple Sites

To reuse data on multiple sites, as explained in the first scenario, just create a ManyToManyFi el d to Site in
your models, for example:

from dj ango. db i nport nodel s
from dj ango. contrib.sites. nodels inport Site

class Articl e(nodel s. Mbdel):
headl i ne = nodel s. Char Fi el d(max| engt h=200)
...
sites = nodel s. ManyToManyFi el d(Si te)

That's the infrastructure you need to associate articles with multiple sites in your database. With that in place,
you can reuse the same Django view code for multiple sites. Continuing the Arti cl e model example, here’s
what an articl e_detail view might look like:

from dj ango. conf inport settings

def article detail (request, article_id):
try:
a = Article.objects.get(id=article_id, sites__id=settings.SITE |ID)
except Article. DoesNot Exi st:
rai se Htp404
#o...

This view function is reusable because it checks the article’s site dynamically, according to the value of the
S| TE_| D setting.

For example, say LJWorld.com’s settings file has a SI TE_| D set to 1, and Lawrence.com’s settings file has a
SI TE_|I D set to 2. If this view is called when LIJWorld.com’s settings file is active, then it will limit the article
lookup to articles in which the list of sites includes LJWorld.com.

Associating Content with a Single Site

Similarly, you can associate a model to the Si t e model in a many-to-one relationship using For ei gnKey .

For example, if an article is allowed on only a single site, you could use a model like this:

from dj ango. db inport nodels
from dj ango. contrib.sites.nbdels inport Site

class Articl e(nodel s. Mbdel):
headl i ne = nodel s. Char Fi el d(max| engt h=200)
...

site = nodel s. Forei gnKey(Site)
This has the same benefits as described in the last section.

Hooking Into the Current Site from Views

On a lower level, you can use the sites framework in your Django views to do particular things based on the
site in which the view is being called, for example:

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

Chapter 14: Other Contributed Subframeworks

from dj ango. conf inport settings

def ny_viewrequest):
if settings.SITE ID ==
Do sonet hi ng.
el se:
Do sonething el se.

Of course, it's ugly to hard-code the site IDs like that. A slightly cleaner way of accomplishing the same thing
is to check the current site’s domain:

from dj ango. conf inport settings
from dj ango. contrib.sites.npbdels inport Site

def ny_viewrequest):
current_site = Site.objects.get(id=settings.SITE |ID)
if current_site.domain == 'foo.com:
Do sonet hi ng
el se:
Do sonething el se.

The idiom of retrieving the Si t e object for the value of settings. SI TE_|I D is quite common, so the Site
model’s manager (Si te. obj ects) has a get _current () method. This example is equivalent to the previous

one:

from dj ango. contrib.sites.nbdels inport Site

def ny_view(request):
current_site = Site.objects.get _current()
if current_site.domain == 'foo.com:
Do sonet hi ng
el se:
Do sonething el se.

j Note
= In this final example, you don’t have to import dj ango. conf. setti ngs.

Getting the Current Domain for Display
For a DRY (Don’t Repeat Yourself) approach to storing your site’s name and domain name, as explained in
“Scenario 2: Storing Your Site Name/Domain in One Place,” just reference the nane and donai n of the current

Si t e object. For example:

from dj ango. contrib.sites.nbdels inport Site
from dj ango. core. mai|l inport send_nmail

def register for_newsletter(request):
Check form values, etc., and subscribe the user.
#o...
current_site = Site.objects.get_current()
send_nmi | (' Thanks for subscribing to % alerts' % current_site.nane,
' Thanks for your subscription. W appreciate it.\n\n-The % team' %
current _site.naneg,

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

Chapter 14: Other Contributed Subframeworks

"editor@s' % current_site. domain,
[user_emmil])
#o...

Continuing our ongoing example of LJWorld.com and Lawrence.com, on Lawrence.com this e-mail has the
subject line “Thanks for subscribing to lawrence.com alerts.” On LJWorld.com, the e-mail has the subject line
“Thanks for subscribing to LJWorld.com alerts.” This same site-specific behavior is applied to the e-mails’
message body.

An even more flexible (but more heavyweight) way of doing this would be to use Django’s template system.
Assuming Lawrence.com and LJWorld.com have different template directories (TEMPLATE_DI RS), you could
simply delegate to the template system like so:

from dj ango. core. mai |l inport send mmail
from dj ango. tenpl ate inport |oader, Context

def register_for_newsletter(request):
Check form values, etc., and subscribe the user

...
subj ect = |oader.get_tenplate('alerts/subject.txt").render(Context({}))
nmessage = | oader.get _tenplate('alerts/nessage.txt').render(Context({}))

send_nmi | (subj ect, nessage, 'do-not-reply@xanple.com, [user_emil])
oo,

In this case, you have to create subj ect. txt and nessage. t xt templates in both the LJWorld.com and
Lawrence.com template directories. As mentioned previously, that gives you more flexibility, but it’s also more
complex.

It’'s a good idea to exploit the Sit e objects as much as possible to remove unneeded complexity and
redundancy.

Getting the Current Domain for Full URLs

Django’s get _absol ute_url () convention is nice for getting your objects’ URLs without the domain name, but
in some cases you might want to display the full URL — with http:// and the domain and everything — for an
object. To do this, you can use the sites framework. Here’s a simple example:

>>> from dj ango. contrib.sites. nodels inport Site

>>> obj = MyModel . obj ects. get (i d=3)

>>> obj.get _absolute_url ()

"/ nynodel / obj ect s/ 3/

>>> Site.objects.get_current().domain

" exanpl e. coni

>>> '"http://%%' % (Site.objects.get _current().donmain, obj.get _absolute url())
"http://exanpl e. com nmynodel / obj ect s/ 3/*

CurrentSiteManager

If Site”"s play a key role in your application, consider using the helpful " CurrentSiteManager
in your model(s). It’'s a model manager (see Appendix B) that automatically filters its queries to include only
objects associated with the current Site.

Use Current Sit eManager by adding it to your model explicitly. For example:
from dj ango. db i nport nodel s

from dj ango. contrib.sites.npbdels inport Site
from dj ango. contrib. sites. nanagers inport CurrentSiteManager

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

Chapter 14: Other Contributed Subframeworks

cl ass Phot o(nodel s. Model) :
phot o = nodel s. Fi | eFi el d(upl oad_t o='/ hone/ phot 0s")
phot ogr apher _nanme = nodel s. Char Fi el d(max| engt h=100)
pub_date = nodel s. Dat eFi el d()
site = nodel s. Forei gnKey(Site)
obj ects = nodel s. Manager ()
on_site = Current SiteManager ()

With this model, Phot 0. obj ects. al | () will return all Phot o objects in the database, but Phot 0. on_site. all ()
will return only the Phot o objects associated with the current site, according to the SI TE_| D setting.

In other words, these two statements are equivalent:

Phot 0. obj ects.filter(site=settings. SITE | D)
Phot 0. on_site.all ()

How did Current Si t eManager know which field of Phot o was the Si t e? It defaults to looking for a field called
site. If your model has a For ei gnKey or ManyToManyFi el d called something other than si t e, you need to
explicitly pass that as the parameter to Current Si t eManager . The following model, which has a field called
publ i sh_on, demonstrates this:

from dj ango. db inport nodels
from dj ango. contrib.sites. nbdels inport Site
from dj ango. contrib. sites. nanagers inport CurrentSiteManager

cl ass Phot o(nodel s. Model) :
phot o = nodel s. Fi | eFi el d(upl oad_t o="/ hone/ phot 0s")
phot ogr apher _nanme = nodel s. Char Fi el d(max| engt h=100)
pub_date = nodel s. Dat eFi el d()
publ i sh_on = nodel s. Forei gnKey(Site)
obj ects = nobdel s. Manager ()
on_site = Current SiteManager (' publish_on')

If you attempt to use Current Si t eManager and pass a field name that doesn’t exist, Django will raise a
Val ueError.

Note

You’'ll probably want to keep a normal (non-site-specific) Manager on your model, even if you use
Current Si t eManager . As explained in Appendix B, if you define a manager manually, then Django
won’t create the automatic obj ect s = nodel s. Manager () manager for you.

Also, certain parts of Django — namely, the Django admin site and generic views — use whichever
manager is defined first in the model, so if you want your admin site to have access to all objects
(not just site-specific ones), put obj ect s = nodel s. Manager () in your model, before you define
Current Si t eManager .

How Django Uses the Sites Framework

Although it’s not required that you use the sites framework, it’s strongly encouraged, because Django takes
advantage of it in a few places. Even if your Django installation is powering only a single site, you should take
a few seconds to create the site object with your donai n and nane, and point to its ID in your S| TE | D setting.

Here’s how Django uses the sites framework:

= In the redirects framework (see the later section “Redirects”), each redirect object is associated with a

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

Chapter 14: Other Contributed Subframeworks

particular site. When Django searches for a redirect, it takes into account the current S| TE | D.

= In the comments framework, each comment is associated with a particular site. When a comment is
posted, its si t e is set to the current SI TE_| D, and when comments are listed via the appropriate
template tag, only the comments for the current site are displayed.

= In the flatpages framework (see the later section “Flatpages”), each flatpage is associated with a
particular site. When a flatpage is created, you specify its si t e, and the flatpage middleware checks the
current SI TE_I D in retrieving flatpages to display.

= In the syndication framework (see Chapter 11), the templates for titl e and descri pti on automatically
have access to a variable {{ site }}, which is the Si t e object representing the current site. Also, the
hook for providing item URLs will use the donmai n from the current Si t e object if you don’t specify a fully
qualified domain.

= In the authentication framework (see Chapter 12), the dj ango. contri b. aut h. vi ews. | ogi n view passes
the current Si t e name to the template as {{ site_nane }}.

Flatpages

Often you’ll have a database-driven Web application up and running, but you’ll need to add a couple of one-off
static pages, such as an About page or a Privacy Policy page. It would be possible to use a standard Web
server such as Apache to serve these files as flat HTML files, but that introduces an extra level of complexity
into your application, because then you have to worry about configuring Apache, you have to set up access for
your team to edit those files, and you can’t take advantage of Django’s template system to style the pages.

The solution to this problem is Django’s flatpages application, which lives in the package

dj ango. contri b. f| at pages. This application lets you manage such one-off pages via Django’s admin site, and
it lets you specify templates for them using Django’s template system. It uses Django models behind the
scenes, which means it stores the pages in a database, just like the rest of your data, and you can access
flatpages with the standard Django database API.

Flatpages are keyed by their URL and site. When you create a flatpage, you specify which URL it’s associated
with, along with which site(s) it’'s on. (For more on sites, see the “Sites” section.)

Using Flatpages

To install the flatpages application, follow these steps:

1. Add 'django.contrib.flat pages' to your | NSTALLED APPS. dj ango. contri b. f| at pages depends on
dj ango. contri b. sites, so make sure the both packages are in | NSTALLED APPS.

2. Add 'dj ango.contrib. fl at pages. m ddl ewar e. Fl at pageFal | backM ddl ewar e' to your
M DDLEWARE_CLASSES setting.

3. Run the command nanage. py syncdb to install the two required tables into your database.

The flatpages application creates two tables in your database: dj ango_f| at page and dj ango_f| at page_sites.
dj ango_f | at page simply maps a URL to a title and bunch of text content. dj ango_f | at page_si t es is a many-
to-many table that associates a flatpage with one or more sites.

The application comes with a single Fl at Page model, defined in dj ango/ contri b/ fl at pages/ nodel s. py. It
looks like this:

from dj ango. db i nport nodel s
from dj ango.contrib.sites. nodels inport Site

cl ass Fl at Page(nodel s. Model) :
url = nodel s. Char Fi el d(max| engt h=100)
title = nodel s. CharFi el d(maxl engt h=200)
content = nodel s. Text Fi el d()
enabl e_coments = nodel s. Bool eanFi el d()

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

Chapter 14: Other Contributed Subframeworks

tenpl at e_nane = nodel s. Char Fi el d(maxl engt h=70, bl ank=Tr ue)
regi stration_required = nodel s. Bool eanFi el d()
sites = nodel s. ManyToManyFi el d(Si te)

Let’'s examine these fields one at a time:

= url : The URL at which this flatpage lives, excluding the domain name but including the leading slash
(e.g., / about/contact/).

= title: The title of the flatpage. The framework doesn’t do anything special with this. It’s your
responsibility to display it in your template.

= content : The content of the flatpage (i.e., the HTML of the page). The framework doesn’t do anything
special with this. It's your responsibility to display it in the template.

= enabl e_comment s: Whether to enable comments on this flatpage. The framework doesn’t do anything
special with this. You can check this value in your template and display a comment form if needed.

= tenpl at e_nane: The name of the template to use for rendering this flatpage. This is optional; if it's not
given or if this template doesn’t exist, the framework will fall back to the template
fl at pages/default.htm .

= registration_required: Whether registration is required for viewing this flatpage. This integrates with
Django’s authentication/user framework, which is explained further in Chapter 12.

= sites: The sites that this flatpage lives on. This integrates with Django’s sites framework, which is
explained in the “Sites” section of this chapter.

You can create flatpages through either the Django admin interface or the Django database APIl. For more
information on this, see the section “Adding, Changing, and Deleting Flatpages.”

Once you’ve created flatpages, Fl at pageFal | backM ddl ewar e does all of the work. Each time any Django
application raises a 404 error, this middleware checks the flatpages database for the requested URL as a last
resort. Specifically, it checks for a flatpage with the given URL with a site ID that corresponds to the SI TE_| D
setting.

If it finds a match, it loads the flatpage’s template or f | at pages/ def aul t. ht ml if the flatpage has not
specified a custom template. It passes that template a single context variable, f| at page, which is the flatpage
object. It uses Request Cont ext in rendering the template.

If FI at pageFal | backM ddl ewar e doesn’t find a match, the request continues to be processed as usual.

Note

This middleware only gets activated for 404 (page not found) errors — not for 500 (server error)
or other error responses. Also note that the order of M DDLEWARE_CLASSES matters. Generally, you
can put Fl at pageFal | backM ddl ewar e at or near the end of the list, because it's a last resort.

Adding, Changing, and Deleting Flatpages

You can add, change and delete flatpages in two ways:

Via the Admin Interface

If you've activated the automatic Django admin interface, you should see a “Flatpages” section on the admin
index page. Edit flatpages as you would edit any other object in the system.

Via the Python API

As described previously, flatpages are represented by a standard Django model that lives in
dj ango/ contri b/ fl at pages/ nodel s. py. Hence, you can access flatpage objects via the Django database API,
for example:

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

Chapter 14: Other Contributed Subframeworks

>>> from dj ango. contri b. fl at pages. nodel s i nport Fl at Page
>>> from dj ango.contrib.sites. nodels inport Site
>>> fp = Fl at Page(
url ='/about/",
title=" About',
content=' <p>About this site...</p>",
enabl e_conmment s=Fal se,
tenpl at e_nane="",
regi stration_required=Fal se,
)
>>> fp.save()
>>> fp.sites.add(Site. objects. get(id=1))
>>> F| at Page. obj ects. get (url ="/about/")
<Fl at Page: /about/ -- About>

Using Flatpage Templates

By default, flatpages are rendered via the template f | at pages/ def aul t. ht nl , but you can override that for a
particular flatpage with the t enpl at e_nane field on the Fl at Page object.

Creating the f | at pages/ defaul t. ht M template is your responsibility. In your template directory, just create a
f | at pages directory containing a def aul t. ht nl file.

Flatpage templates are passed a single context variable, f| at page, which is the flatpage object.

Here’s a sample f | at pages/ defaul t. ht Ml template:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN
"http://ww. w3. or g/ TR/ REC- ht ml 40/ | oose. dtd">

<ht m >

<head>

<title>{{ flatpage.title }}</title>

</ head>

<body>

{{ flatpage.content }}

</ body>

</htm >

Redirects

Django’s redirects framework lets you manage redirects easily by storing them in a database and treating them
as any other Django model object. For example, you can use the redirects framework to tell Django, “Redirect
any request to / nusi c/ to /sections/arts/ music/.” This comes in handy when you need to move things
around on your site; Web developers should do whatever is necessary to avoid broken links.

Using the Redirects Framework
To install the redirects application, follow these steps:

1. Add 'django.contrib.redirects' to your | NSTALLED APPS.

2. Add ' dj ango. contrib.redirects. m ddl ewar e. Redi rect Fal | backM ddl ewar e' to your
M DDLEWARE_CLASSES setting.

3. Run the command nmanage. py syncdb to install the single required table into your database.

manage. py syncdb creates a dj ango_r edi rect table in your database. This is a simple lookup table with
site_id, ol d_path, and new_pat h fields.

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

Chapter 14: Other Contributed Subframeworks

You can create redirects through either the Django admin interface or the Django database API. For more, see
the section “Adding, Changing, and Deleting Redirects.”

Once you’ve created redirects, the Redi r ect Fal | backM ddl ewar e class does all of the work. Each time any
Django application raises a 404 error, this middleware checks the redirects database for the requested URL as
a last resort. Specifically, it checks for a redirect with the given ol d_pat h with a site ID that corresponds to
the SI TE_I D setting. (See the earlier section “Sites” for more information on SI TE_| D and the sites
framework.) Then it follows these steps:

= If it finds a match, and new_pat h is not empty, it redirects to new_pat h.

= |f it finds a match, and new_pat h is empty, it sends a 410 (“Gone”) HTTP header and an empty
(contentless) response.

= If it doesn’t find a match, the request continues to be processed as usual.

The middleware only gets activated for 404 errors — not for 500 errors or responses of any other status code.

Note that the order of M DDLEWARE _CLASSES matters. Generally, you can put Redi r ect Fal | backM ddl ewar e
toward the end of the list, because it's a last resort.

Note

If you're using both the redirect and flatpage fallback middleware, consider which one (redirect or
flatpage) you’d like checked first. We suggest flatpages before redirects (thus putting the flatpage
middleware before the redirect middleware), but you might feel differently.

Adding, Changing, and Deleting Redirects

You can add, change and delete redirects in two ways:

Via the Admin Interface

If you’ve activated the automatic Django admin interface, you should see a “Redirects” section on the admin
index page. Edit redirects as you would edit any other object in the system.

Via the Python API

Redirects are represented by a standard Django model that lives in dj ango/ contri b/ redi rect s/ nodel s. py.
Hence, you can access redirect objects via the Django database API, for example:

>>> from dj ango. contrib.redirects. nodels inport Redirect
>>> from dj ango. contrib.sites. nodels inport Site
>>> red = Redirect(
site=Site. objects. get(id=1),
ol d_path="'/nusic/",
new_pat h='/sections/arts/nusic/",
)
>>> red. save()
>>> Redirect. objects. get(old_path="/nusic/")
<Redirect: /nusic/ ---> /sections/arts/nusic/>

CSRF Protection

The dj ango. contri b. csrf package protects against Cross-Site Request Forgery (CSRF).

CSRF, also known as “session riding,” is a Web site security exploit. It happens when a malicious Web site
tricks a user into unknowingly loading a URL from a site at which that user is already authenticated, hence
taking advantage of the user’s authenticated status. This can be a bit tricky to understand at first, so we walk
through two examples in this section.

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

Chapter 14: Other Contributed Subframeworks

A Simple CSRF Example

Suppose you’re logged in to a webmail account at exanpl e. com. This webmail site has a Log Out button that
points to the URL exanpl e. conl | ogout — that is, the only action you need to take in order to log out is to visit
the page exanpl e. coni | ogout .

A malicious site can coerce you to visit the URL exanpl e. coni | ogout by including that URL as a hidden

<i f rane> on its own (malicious) page. Thus, if you're logged in to the exanpl e. comwebmail account and visit
the malicious page that has an <i frame> to exanpl e. com | ogout , the act of visiting the malicious page will
log you out from exanpl e. com.

Clearly, being logged out of a webmail site against your will is not a terrifying breach of security, but this same
type of exploit can happen to any site that “trusts” users, such as an online banking site or an e-commerce
site.

A More Complex CSRF Example

In the previous example, exanpl e. comwas partially at fault because it allowed a state change (i.e., logging
the user out) to be requested via the HTTP GET method. It's much better practice to require an HTTP POST for
any request that changes state on the server. But even Web sites that require POST for state-changing actions
are vulnerable to CSRF.

Suppose exanpl e. comhas upgraded its Log Out functionality so that it’'s a <f or n» button that is requested via
POST to the URL exanpl e. conm | ogout . Furthermore, the logout <f or n® includes this hidden field:

<i nput type="hidden" nanme="confirni value="true" />

This ensures that a simple POST to the URL exanpl e. coni | ogout won’t log a user out; in order for a user to
log out, the user must request exanpl e. conl | ogout via POST and send the confi r mPGST variable with a value
of "true'.

Well, despite the extra security, this arrangement can still be exploited by CSRF — the malicious page just
needs to do a little more work. Attackers can create an entire form targeting your site, hide it in an invisible
<i frane>, and then use JavaScript to submit that form automatically.

Preventing CSRF

How, then, can your site protect itself from this exploit? The first step is to make sure all GET requests are free
of side effects. That way, if a malicious site includes one of your pages as an <i frane>, it won’t have a
negative effect.

That leaves POST requests. The second step is to give each POST <f or n» a hidden field whose value is secret
and is generated from the user’s session ID. Then, when processing the form on the server side, check for that
secret field and raise an error if it doesn’t validate.

This is exactly what Django’s CSRF prevention layer does, as explained in the sections that follow.

Using the CSRF Middleware

The dj ango. contri b. csrf package contains only one module: ni ddl ewar e. py. This module contains a Django
middleware class, Csrf M ddl ewar e, which implements the CSRF protection.

To activate this CSRF protection, add ' dj ango. contri b. csrf. nm ddl eware. Csrf M ddl eware' to the

M DDLEWARE_CLASSES setting in your settings file. This middleware needs to process the response after

Sessi onM ddl ewar e, so Csrf M ddl ewar e must appear before Sessi onM ddl ewar e in the list (because the
response middleware is processed last-to-first). Also, it must process the response before the response gets
compressed or otherwise mangled, so Csrf M ddl ewar e must come after &Zi pM ddl ewar e. Once you’ve added
that to your M DDLEWARE_CLASSES setting, you're done. See the section “Order of MIDDLEWARE_CLASSES” in

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

Chapter 14: Other Contributed Subframeworks
Chapter 13 for more explanation.

In case you're interested, here’s how Csrf M ddl ewar e works. It does these two things:

1. It modifies outgoing requests by adding a hidden form field to all POST forms, with the name
csrfm ddl ewar et oken and a value that is a hash of the session ID plus a secret key. The middleware
does not modify the response if there’s no session ID set, so the performance penalty is negligible for
requests that don’t use sessions.

2. On all incoming POST requests that have the session cookie set, it checks that csrf nm ddl ewar et oken is
present and correct. If it isn’'t, the user will get a 403 HTTP error. The content of the 403 error page is the
message “Cross Site Request Forgery detected. Request aborted.”

This ensures that only forms originating from your Web site can be used to POST data back.

This middleware deliberately targets only HTTP POST requests (and the corresponding POST forms). As we
explained, GET requests ought never to have side effects; it's your own responsibility to ensure this.

POST requests not accompanied by a session cookie are not protected, but they don’'t need to be protected,
because a malicious Web site could make these kind of requests anyway.

To avoid altering non-HTML requests, the middleware checks the response’s Cont ent - Type header before
modifying it. Only pages that are served as text/ htm or applicati on/ xm +xht i are modified.

Limitations of the CSRF Middleware

Csrf M ddl ewar e requires Django’s session framework to work. (See Chapter 12 for more on sessions.) If
you’re using a custom session or authentication framework that manually manages session cookies, this
middleware will not help you.

If your application creates HTML pages and forms in some unusual way (e.g., if it sends fragments of HTML in
JavaScript docunent . wri t e statements), you might bypass the filter that adds the hidden field to the form. In
this case, the form submission will always fail. (This happens because Csrf M ddl ewar e uses a regular
expression to add the csrfm ddl ewar et oken field to your HTML before the page is sent to the client, and the
regular expression sometimes cannot handle wacky HTML.) If you suspect this might be happening, just view
the source in your Web browser to see whether csrf ni ddl ewar et oken was inserted into your <f or n>.

For more CSRF information and examples, visit http://en.wikipedia.org/wiki/CSRF.

Humanizing Data

This application holds a set of Django template filters useful for adding a “human touch” to data. To activate
these filters, add ' dj ango. contri b. hunani ze' to your | NSTALLED APPS setting. Once you’ve done that, use
{% | oad humani ze % in a template, and you’ll have access to the filters described in the following sections.

apnumber

For numbers 1 through 9, this filter returns the number spelled out. Otherwise, it returns the numeral. This
follows Associated Press style.

Examples:

1 becomes “one”.

2 becomes “two”.

10 becomes “10”.

You can pass in either an integer or a string representation of an integer.

intcomma

This filter converts an integer to a string containing commas every three digits.

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

http://en.wikipedia.org/wiki/CSRF

Chapter 14: Other Contributed Subframeworks

Examples:

= 4500 becomes “4,500".

= 45000 becomes “45,000”.

= 450000 becomes “450,000".

= 4500000 becomes “4,500,000".

You can pass in either an integer or a string representation of an integer.

intword

This filter converts a large integer to a friendly text representation. It works best for numbers over 1 million.
Examples:

= 1000000 becomes “1.0 million”.
= 1200000 becomes “1.2 million”.
= 1200000000 becomes “1.2 billion”.

Values up to 1 quadrillion (1,000,000,000,000,000) are supported.

You can pass in either an integer or a string representation of an integer.

ordinal

This filter converts an integer to its ordinal as a string.
Examples:

= 1 becomes “1st”.
= 2 becomes “2nd”.

= 3 becomes “3rd”.

You can pass in either an integer or a string representation of an integer.

Markup Filters

The following collection of template filters implements common markup languages:

= textile: Implements Textile (http://en.wikipedia.org/wiki/Textile_%28markup_language%29)
= nmar kdown: Implements Markdown (http://en.wikipedia.org/wiki/Markdown)

= restructuredtext: Implements ReStructured Text (http://en.wikipedia.org/wiki/ReStructuredText)

In each case, the filter expects formatted markup as a string and returns a string representing the marked-up
text. For example, the texti | e filter converts text that is marked up in Textile format to HTML:

{% | oad markup %
{{ object.content|textile }}

To activate these filters, add ' dj ango. contri b. mar kup' to your | NSTALLED APPS setting. Once you’ve done
that, use { % | oad nmar kup 9% in a template, and you’ll have access to these filters. For more documentation,
read the source code in dj ango/ contri b/ mar kup/ t enpl at et ags/ mar kup. py.

What’s Next?

Many of these contributed frameworks (CSRF, the auth system, etc.) do their magic by providing a piece of
middleware. Middleware is essentially code that runs before and/or after every single request and can modify

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

http://en.wikipedia.org/wiki/Textile_%28markup_language%29
http://en.wikipedia.org/wiki/Markdown
http://en.wikipedia.org/wiki/ReStructuredText

Chapter 14: Other Contributed Subframeworks

each request and response at will. Next, we’ll discuss Django’s built-in middleware and explain how you can
write your own.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter14/[2009.01.07. 10:41:03]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 15: Middleware

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 15: Middleware

On occasion, you’ll need to run a piece of code on each and every request that Django handles. This code
might need to modify the request before the view handles it, it might need to log information about the
request for debugging purposes, and so forth.

You can do this with Django’s middleware framework, which is a set of hooks into Django’s request/response
processing. It's a light, low-level “plug-in” system capable of globally altering both Django’s input and output.

Each middleware component is responsible for doing some specific function. If you're reading this book linearly
(sorry, postmodernists), you've seen middleware a number of times already:

= All of the session and user tools that we looked at in Chapter 12 are made possible by a few small pieces
of middleware (more specifically, the middleware makes r equest . sessi on and request . user available to
you in views).

= The sitewide cache discussed in Chapter 13 is actually just a piece of middleware that bypasses the call to
your view function if the response for that view has already been cached.

= The fl at pages, redirects, and csrf contributed applications from Chapter 14 all do their magic through
middleware components.

This chapter dives deeper into exactly what middleware is and how it works, and explains how you can write
your own middleware.

What’s Middleware?

A middleware component is simply a Python class that conforms to a certain API. Before diving into the formal
aspects of what that API is, let’s look at a very simple example.

High-traffic sites often need to deploy Django behind a load-balancing proxy (see Chapter 20). This can cause
a few small complications, one of which is that every request’s remote IP (request. META["REMOTE_| P"]) will
be that of the load balancer, not the actual IP making the request. Load balancers deal with this by setting a
special header, X- For war ded- For , to the actual requesting IP address.

So here’s a small bit of middleware that lets sites running behind a proxy still see the correct IP address in
request . META] " REMOTE_ADDR"] :

cl ass Set Renot eAddr Fr onfor war dedFor (obj ect) :
def process_request(self, request):
try:
real _ip = request. META[' HTTP_X FORWARDED FOR']
except KeyError:
pass
el se:
HTTP_X FORWARDED FOR can be a comma-separated |ist of |Ps.
Take just the first one.
real _ip = real _ip.split(",")[0]
request. VETA[' REMOTE ADDR'] = real _ip

If this is installed (see the next section), every request’s X- For war ded- For value will be automatically inserted

http://www.djangobook.com/en/1.0/chapter15/[2009.01.07. 10:41:12]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 15: Middleware

into request . META[' REMOTE_ADDR] . This means your Django applications don’t need to be concerned with
whether they’re behind a load-balancing proxy or not; they can simply access
request . META[' REMOTE_ADDR'], and that will work whether or not a proxy is being used.

In fact, this is a common enough need that this piece of middleware is a built-in part of Django. It lives in
dj ango. m ddl ewar e. htt p, and you can read a bit more about it in the next section.

Middleware Installation

If you’ve read this book straight through, you’ve already seen a number of examples of middleware
installation; many of the examples in previous chapters have required certain middleware. For completeness,
here’s how to install middleware.

To activate a middleware component, add it to the M DDLEWARE_CLASSES tuple in your settings module. In
M DDLEWARE_CLASSES, each middleware component is represented by a string: the full Python path to the
middleware’s class name. For example, here’s the default M DDLEWARE _CLASSES created by

dj ango- adm n. py startproject:

M DDLEWARE_CLASSES = (
' dj ango. m ddl ewar e. common. CommonM ddl ewar e' ,
' dj ango. contri b. sessi ons. m ddl ewar e. Sessi onM ddl ewar e' ,
' dj ango. contri b. aut h. m ddl ewar e. Aut henti cati onM ddl eware' ,
' dj ango. m ddl ewar e. doc. XVi ewM ddl ewar €'

A Django installation doesn’t require any middleware — M DDLEWARE_CLASSES can be empty, if you'd like — but
we recommend that you activate CormonM ddl ewar e, which we explain shortly.

The order is significant. On the request and view phases, Django applies middleware in the order given in

M DDLEWARE_CLASSES, and on the response and exception phases, Django applies middleware in reverse order.
That is, Django treats M DDLEWARE_CLASSES as a sort of “wrapper” around the view function: on the request it
walks down the list to the view, and on the response it walks back up. See the section “How Django Processes
a Request: Complete Details” in Chapter 3 for a review of the phases.

Middleware Methods

Now that you know what middleware is and how to install it, let’s take a look at all the available methods that
middleware classes can define.

Initializer: __init__ (self)

Use init__ () to perform systemwide setup for a given middleware class.

For performance reasons, each activated middleware class is instantiated only once per server process. This
means that __init__() is called only once — at server startup — not for individual requests.

A common reason to implement an __init__() method is to check whether the middleware is indeed needed.

If __init__() raises dj ango. core. exceptions. M ddl ewar eNot Used, then Django will remove the middleware

from the middleware stack. You might use this feature to check for some piece of software that the middleware
class requires, or check whether the server is running debug mode, or any other such environment situation.

If a middleware class defines an __init__() method, the method should take no arguments beyond the

standard sel f .

Request Preprocessor: process_request(self, request)

This method gets called as soon as the request has been received — before Django has parsed the URL to
determine which view to run. It gets passed the Ht t pRequest object, which you may modify at will.

http://www.djangobook.com/en/1.0/chapter15/[2009.01.07. 10:41:12]

Chapter 15: Middleware

process_request () should return either None or an Ht t pResponse object.

= If it returns None, Django will continue processing this request, executing any other middleware and then
the appropriate view.

= If it returns an Ht t pResponse object, Django won’t bother calling any other middleware (of any type) or
the appropriate view. Django will immediately return that Ht t pResponse.

View Preprocessor: process_view(self, request, view, args, kwargs)

This method gets called after the request preprocessor is called and Django has determined which view to
execute, but before that view has actually been executed.

The arguments passed to this view are shown in Table 15-1.

Table 15-1. Arguments Passed to process_view()

Argument Explanation
request The Ht t pRequest object.
Vi ew The Python function that Django will call to handle this request. This is the actual

function object itself, not the name of the function as a string.

ar gs The list of positional arguments that will be passed to the view, not including the r equest
argument (which is always the first argument to a view).

kwar gs The dictionary of keyword arguments that will be passed to the view.

Just like process_request (), process_vi ew() should return either None or an Ht t pResponse object.

= If it returns None, Django will continue processing this request, executing any other middleware and then
the appropriate view.

= If it returns an Ht t pResponse object, Django won’t bother calling any other middleware (of any type) or
the appropriate view. Django will immediately return that Ht t pResponse.

Response Postprocessor: process_response(self, request, response)

This method gets called after the view function is called and the response is generated. Here, the processor
can modify the content of a response; one obvious use case is content compression, such as gzipping of the
request’s HTML.

The parameters should be pretty self-explanatory: r equest is the request object, and r esponse is the
response object returned from the view.

Unlike the request and view preprocessors, which may return None, process_response() must return an
Ht t pResponse object. That response could be the original one passed into the function (possibly modified) or a
brand-new one.

Exception Postprocessor: process_exception(self, request, exception)

This method gets called only if something goes wrong and a view raises an uncaught exception. You can use
this hook to send error notifications, dump postmortem information to a log, or even try to recover from the
error automatically.

The parameters to this function are the same r equest object we’ve been dealing with all along, and
excepti on, which is the actual Excepti on object raised by the view function.

process_exception() should return a either None or an Ht t pResponse object.

= If it returns None, Django will continue processing this request with the framework’s built-in exception

http://www.djangobook.com/en/1.0/chapter15/[2009.01.07. 10:41:12]

Chapter 15: Middleware

handling.

= If it returns an Ht t pResponse object, Django will use that response instead of the framework’s built-in
exception handling.

Note

Django ships with a number of middleware classes (discussed in the following section) that make
good examples. Reading the code for them should give you a good feel for the power of
middleware.

You can also find a number of community-contributed examples on Django’s wiki:
http://code.djangoproject.com/wiki/ContributedMiddleware

Built-in Middleware

Django comes with some built-in middleware to deal with common problems, which we discuss in the sections
that follow.

Authentication Support Middleware
Middleware class: dj ango. contri b. aut h. mi ddl ewar e. Aut henti cati onM ddl ewar e.

This middleware enables authentication support. It adds the r equest . user attribute, representing the currently
logged-in user, to every incoming Ht t pRequest object.

See Chapter 12 for complete details.

“Common” Middleware

Middleware class: dj ango. mi ddl ewar e. conmon. ConmonM ddl ewar e.
This middleware adds a few conveniences for perfectionists:

= Forbids access to user agents in the ~ "DISALLOWED_USER_AGENTS™ " setting: If provided, this setting
should be a list of compiled regular expression objects that are matched against the user-agent header for
each incoming request. Here’'s an example snippet from a settings file:

import re

Dl SALLONED USER AGENTS = (
re.conpile(r' "Omi Expl orer_Bot'),
re.conpil e(r' ~"Googl ebot ")

Note the i nport re, because DI SALLOAED USER _AGENTS requires its values to be compiled regexes (i.e.,
the output of re. conpi | e()). The settings file is regular python, so it's perfectly OK to include Python
i mport statements in it.

= Performs URL rewriting based on the ~ “APPEND_SLASH™ " and ~“PREPEND_WWW"™ " settings: If
APPEND_SLASH is True, URLs that lack a trailing slash will be redirected to the same URL with a trailing
slash, unless the last component in the path contains a period. So f 0o. conl bar is redirected to
foo. com bar/, but foo. conl bar/file.txt is passed through unchanged.

If PREPEND_WAWVis Tr ue, URLs that lack a leading “www.” will be redirected to the same URL with a leading

WWW. ™.

Both of these options are meant to normalize URLs. The philosophy is that each URL should exist in one —
and only one — place. Technically the URL exanpl e. conf bar is distinct from exanpl e. coml bar/ , which in

http://www.djangobook.com/en/1.0/chapter15/[2009.01.07. 10:41:12]

http://code.djangoproject.com/wiki/ContributedMiddleware

Chapter 15: Middleware

turn is distinct from www. exanpl e. contf bar/ . A search-engine indexer would treat these as separate URLs,
which is detrimental to your site’s search-engine rankings, so it's a best practice to normalize URLs.

= Handles ETags based on the ~“USE_ETAGS™ " setting: ETags are an HTTP-level optimization for caching
pages conditionally. If USE_ETAGS is set to Tr ue, Django will calculate an ETag for each request by MD5-
hashing the page content, and it will take care of sending Not Mdi fi ed responses, if appropriate.

Note there is also a conditional GET middleware, covered shortly, which handles ETags and does a bit
more.

Compression Middleware

Middleware class: dj ango. mi ddl ewar e. gzi p. &Zi pM ddl ewar e.

This middleware automatically compresses content for browsers that understand gzip compression (all modern
browsers). This can greatly reduce the amount of bandwidth a Web server consumes. The tradeoff is that it
takes a bit of processing time to compress pages.

We usually prefer speed over bandwidth, but if you prefer the reverse, just enable this middleware.

Conditional GET Middleware

Middleware class: dj ango. mi ddl ewar e. htt p. Condi ti onal Get M ddl ewar e.

This middleware provides support for conditional GET operations. If the response has an Last - Modi fi ed or
ETag or header, and the request has | f - None- Mat ch or | f - Modi fi ed- Si nce, the response is replaced by an
304 (“Not modified”) response. ETag support depends on on the USE_ETAGS setting and expects the ETag
response header to already be set. As discussed above, the ETag header is set by the Common middleware.

It also removes the content from any response to a HEAD request and sets the Dat e and Cont ent - Lengt h
response headers for all requests.

Reverse Proxy Support (X-Forwarded-For Middleware)

Middleware class: dj ango. mi ddl ewar e. ht t p. Set Renot eAddr Fr onfor war dedFor .

This is the example we examined in the “What’s Middleware?” section earlier. It sets
request . META[' REMOTE_ADDR] based on request. META[' HTTP_X FORWARDED FOR], if the latter is set. This is
useful if you’re sitting behind a reverse proxy that causes each request’s REMOTE_ADDR to be set to 127.0.0. 1.

Danger!

This middleware does not validate HTTP_X FORWARDED FOR.

If you're not behind a reverse proxy that sets HTTP_X FORWARDED FOR automatically, do not use
this middleware. Anybody can spoof the value of HTTP_X FORWARDED FOR, and because this sets
REMOTE_ADDR based on HTTP_X FORWARDED_ FOR, that means anybody can fake his IP address.

Only use this middleware when you can absolutely trust the value of HTTP_X_FORWARDED FOR.

Session Support Middleware

Middleware class: dj ango. contri b. sessi ons. nm ddl ewar e. Sessi onM ddl ewar e.

This middleware enables session support. See Chapter 12 for details.

Sitewide Cache Middleware

Middleware class: dj ango. m ddl ewar e. cache. CacheM ddl ewar e.

http://www.djangobook.com/en/1.0/chapter15/[2009.01.07. 10:41:12]

Chapter 15: Middleware

This middleware caches each Django-powered page. This was discussed in detail in Chapter 13.

Transaction Middleware

Middleware class: dj ango. mi ddl ewar e. transacti on. Transacti onM ddl ewar e.

This middleware binds a database COMM T or ROLLBACK to the request/response phase. If a view function runs
successfully, a COM T is issued. If the view raises an exception, a ROLLBACK is issued.

The order of this middleware in the stack is important. Middleware modules running outside of it run with
commit-on-save — the default Django behavior. Middleware modules running inside it (coming later in the
stack) will be under the same transaction control as the view functions.

See Appendix C for more about information about database transactions.

“X-View” Middleware

Middleware class: dj ango. m ddl ewar e. doc. XVi ewM dd| ewar e.

This middleware sends custom X- Vi ew HTTP headers to HEAD requests that come from IP addresses defined in
the | NTERNAL | PS setting. This is used by Django’s automatic documentation system.

What’s Next?

Web developers and database-schema designers don’t always have the luxury of starting from scratch. In the
next chapter, we’ll cover how to integrate with legacy systems, such as database schemas you’'ve inherited
from the 1980s.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter15/[2009.01.07. 10:41:12]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 16: Integrating with Legacy Databases and Applications

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 16: Integrating with Legacy Databases and
Applications

Django is best suited for so-called green-field development — that is, starting projects from scratch, as if you
were constructing a building on a fresh field of green grass. But despite the fact that Django favors from-
scratch projects, it's possible to integrate the framework into legacy databases and applications. This chapter
explains a few integration strategies.

Integrating with a Legacy Database

Django’s database layer generates SQL schemas from Python code — but with a legacy database, you already
have the SQL schemas. In such a case, you’ll need to create models for your existing database tables. For this
purpose, Django comes with a tool that can generate model code by reading your database table layouts. This
tool is called i nspect db, and you can call it by executing the command nmanage. py i nspectdb.

Using i nspect db

The i nspect db utility introspects the database pointed to by your settings file, determines a Django model
representation for each of your tables, and prints the Python model code to standard output.

Here’s a walk-through of a typical legacy database integration process from scratch. The only assumptions are
that Django is installed and that you have a legacy database.

1. Create a Django project by running dj ango- adni n. py startproject nysite (where nysite is your
project’'s name). We’ll use nysi t e as the project name in this example.

2. Edit the settings file in that project, nmysi te/ settings. py, to tell Django what your database connection
parameters are and what the name of the database is. Specifically, provide the DATABASE_NAME,
DATABASE _ENG NE, DATABASE USER, DATABASE PASSWORD, DATABASE HOST, and DATABASE_PORT settings.
(Note that some of these settings are optional. Refer to Chapter 5 for more information.)

3. Create a Django application within your project by running pyt hon nysite/ nanage. py startapp nyapp
(where nyapp is your application’s name). We’ll use nyapp as the application name here.

4. Run the command pyt hon nysite/ nmanage. py i nspectdb. This will examine the tables in the
DATABASE _NAME database and print the generated model class for each table. Take a look at the output to
get an idea of what i nspect db can do.

5. Save the output to the nodel s. py file within your application by using standard shell output redirection:
pyt hon nysite/ manage. py inspectdb > nysite/ myapp/ nodel s. py

6. Edit the nysite/ myapp/ nodel s. py file to clean up the generated models and make any necessary
customizations. We’ll give some hints for this in the next section.

Cleaning Up Generated Models

As you might expect, the database introspection isn’t perfect, and you’ll need to do some light cleanup of the
resulting model code. Here are a few pointers for dealing with the generated models:

http://www.djangobook.com/en/1.0/chapter16/[2009.01.07. 10:41:22]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 16: Integrating with Legacy Databases and Applications

1.

Each database table is converted to a model class (i.e., there is a one-to-one mapping between database
tables and model classes). This means that you’ll need to refactor the models for any many-to-many join
tables into ManyToManyFi el d objects.

. Each generated model has an attribute for every field, including i d primary key fields. However, recall

that Django automatically adds an i d primary key field if a model doesn’t have a primary key. Thus, you’ll
want to remove any lines that look like this:

id = nodel s. I ntegerField(primary_key=True)

Not only are these lines redundant, but also they can cause problems if your application will be adding
new records to these tables. The i nspect db command cannot detect whether a field is autoincremented,
so it’s up to you to change this to Aut oFi el d, if necessary.

Each field’s type (e.g., Char Fi el d, Dat eFi el d) is determined by looking at the database column type
(e.g., VARCHAR, DATE). If i nspect db cannot map a column’s type to a model field type, it will use

Text Fi el d and will insert the Python comment ' This field type is a guess.' next to the field in the
generated model. Keep an eye out for that, and change the field type accordingly if needed.

If a field in your database has no good Django equivalent, you can safely leave it off. The Django model
layer is not required to include every field in your table(s).

. If a database column name is a Python reserved word (such as pass, cl ass, or for), i nspect db will

append ' _field' to the attribute name and set the db_col umm attribute to the real field name (e.g.,
pass, cl ass, or for).

For example, if a table has an | NT column called f or , the generated model will have a field like this:
for_field = nodel s.|IntegerField(db_colum="for")

i nspect db will insert the Python comment
'"Field renaned because it was a Python reserved word.' next to the field.

. If your database contains tables that refer to other tables (as most databases do), you might need to

rearrange the order of the generated models so that models that refer to other models are ordered
properly. For example, if model Book has a For ei gnKey to model Aut hor , model Aut hor should be defined
before model Book. If you need to create a relationship on a model that has not yet been defined, you can
use the name of the model, rather than the model object itself.

. i nspect db detects primary keys for PostgreSQL, MySQL, and SQLite. That is, it inserts pri mary_key=Tr ue

where appropriate. For other databases, you’'ll need to insert pri mary_key=Tr ue for at least one field in
each model, because Django models are required to have a pri mary_key=Tr ue field.

Foreign-key detection only works with PostgreSQL and with certain types of MySQL tables. In other cases,
foreign-key fields will be generated as
IntegerField “s, assumng the foreign-key colum was an " | NT column.

Integrating with an Authentication System

It's possible to integrate Django with an existing authentication system — another source of usernames and
passwords or authentication methods.

For example, your company may already have an LDAP setup that stores a username and password for every
employee. It would be a hassle for both the network administrator and the users themselves if users had
separate accounts in LDAP and the Django-based applications.

To handle situations like this, the Django authentication system lets you plug in other authentication sources.
You can override Django’s default database-based scheme, or you can use the default system in tandem with
other systems.

http://www.djangobook.com/en/1.0/chapter16/[2009.01.07. 10:41:22]

Chapter 16: Integrating with Legacy Databases and Applications

Specifying Authentication Back-ends

Behind the scenes, Django maintains a list of “authentication back-ends” that it checks for authentication.
When somebody calls dj ango. contri b. aut h. aut henti cat e() (as described in Chapter 12), Django tries
authenticating across all of its authentication back-ends. If the first authentication method fails, Django tries
the second one, and so on, until all back-ends have been attempted.

The list of authentication back-ends to use is specified in the AUTHENTI CATI ON_BACKENDS setting. This should
be a tuple of Python path names that point to Python classes that know how to authenticate. These classes can
be anywhere on your Python path.

By default, AUTHENTI CATI ON_BACKENDS is set to the following:
(' django. contrib. aut h. backends. Mbdel Backend' ,)

That’s the basic authentication scheme that checks the Django users database.

The order of AUTHENTI CATI ON_BACKENDS matters, so if the same username and password are valid in multiple
back-ends, Django will stop processing at the first positive match.

Writing an Authentication Back-end

An authentication back-end is a class that implements two methods: get _user (i d) and
aut henti cate(**credential s) .

The get _user method takes an i d — which could be a username, database ID, or whatever — and returns a
User object.

The aut hent i cat e method takes credentials as keyword arguments. Most of the time it looks like this:

cl ass MyBackend(object):
def authenticate(self, usernane=None, password=None):
Check the usernane/password and return a User.

But it could also authenticate a token, like so:

cl ass MyBackend(obj ect):
def authenticate(self, token=None):
Check the token and return a User.

Either way, aut henti cat e should check the credentials it gets, and it should return a User object that matches
those credentials, if the credentials are valid. If they’re not valid, it should return None.

The Django admin system is tightly coupled to Django’s own database-backed User object described in
Chapter 12. The best way to deal with this is to create a Django User object for each user that exists for your
back-end (e.g., in your LDAP directory, your external SQL database, etc.). Either you can write a script to do
this in advance or your aut henti cat e method can do it the first time a user logs in.

Here’s an example back-end that authenticates against a username and password variable defined in your
settings. py file and creates a Django User object the first time a user authenticates:

from dj ango. conf inport settings
from dj ango. contrib. auth. nodel s inport User, check password

cl ass SettingsBackend(object):

Aut henti cate agai nst the settings ADM N LOG N and ADM N_PASSWORD.

http://www.djangobook.com/en/1.0/chapter16/[2009.01.07. 10:41:22]

Chapter 16: Integrating with Legacy Databases and Applications

Use the login nane, and a hash of the password. For exanple:

ADM N LOG N = 'adnm n'
ADM N _PASSWORD = 'shal$4e9873%af bcf 42e21bd417f b71db8c66b321e9f c33051de’
def authenticate(self, username=None, password=None):
login valid = (settings. ADM N LOG N == user nane)
pwd_valid = check_password(password, settings. ADM N _PASSWORD)
if login_valid and pwd_vali d:
try:
user = User. objects. get (user nane=user nane)
except User. DoesNot Exi st:
Create a new user. Note that we can set password
to anything, because it won't be checked; the password
fromsettings.py will.
user = User (usernane=user nane, password='get from settings.py')
user.is_staff = True
user.is_superuser = True
user. save()
return user
return None

def get _user(self, user_id):
try:
return User. objects. get(pk=user _id)
except User. DoesNot Exi st:
return None

Integrating with Legacy Web Applications

It's possible to run a Django application on the same Web server as an application powered by another
technology. The most straightforward way of doing this is to use Apache’s configuration file, htt pd. conf , to
delegate different URL patterns to different technologies. (Note that Chapter 20 covers Django deployment on
Apache/mod_python, so it might be worth reading that chapter first before attempting this integration.)

The key is that Django will be activated for a particular URL pattern only if your htt pd. conf file says so. The
default deployment explained in Chapter 20 assumes you want Django to power every page on a particular
domain:

<Location "/">
Set Handl er pyt hon- program
Pyt honHandl er dj ango. cor e. handl er s. nodpyt hon
Set Env. DJANGO_SETTI NGS_MODULE nysite. settings
Pyt honDebug On

</ Locati on>

Here, the <Location "/"> line means “handle every URL, starting at the root,” with Django.

It’s perfectly fine to limit this <Locat i on> directive to a certain directory tree. For example, say you have a
legacy PHP application that powers most pages on a domain and you want to install a Django admin site at
/ adm n/ without disrupting the PHP code. To do this, just set the <Locat i on> directive to / adm n/ :

<Location "/adm n/">

Set Handl er pyt hon- program
Pyt honHandl er dj ango. cor e. handl er s. nodpyt hon

http://www.djangobook.com/en/1.0/chapter16/[2009.01.07. 10:41:22]

Chapter 16: Integrating with Legacy Databases and Applications

Set Env. DJANGO_SETTI NGS_MODULE nysite. settings
Pyt honDebug On
</ Locati on>

With this in place, only the URLs that start with / adni n/ will activate Django. Any other page will use whatever
infrastructure already existed.

Note that attaching Django to a qualified URL (such as / admi n/ in this section’s example) does not affect the
Django URL parsing. Django works with the absolute URL (e.g., / admi n/ peopl e/ per son/ add/), not a “stripped”
version of the URL (e.g., / peopl e/ per son/ add/). This means that your root URLconf should include the leading
/adm n/ .

What’s Next?

Speaking of the Django admin site and bending the framework to fit legacy needs, another common task is to
customize the Django admin site. The next chapter focuses on such customization.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter16/[2009.01.07. 10:41:22]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 17: Extending Django's Admin Interface

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 17: Extending Django’s Admin Interface

Chapter 6 introduced Django’s admin interface, and now it's time to circle back and take a closer look.

As we've said a few times before, Django’s admin interface is one of the framework’s “killer features,” and
most Django developers find it time-saving and useful. Because the admin interface is so popular, it's common
for Django developers to want to customize or extend it.

The last few sections of Chapter 6 offer some simple ways to customize certain parts of the admin interface.
Before proceeding with this chapter, consider reviewing that material; it covers how to customize the admin
interface’s change lists and edit forms, as well as an easy way to “rebrand” the admin interface to match your
site.

Chapter 6 also discusses when and why you’d want to use the admin interface, and since that material makes
a good jumping-off point for the rest of this chapter, we’ll reproduce it here:

Obviously, the admin interface is extremely useful for editing data (fancy that). If you have
any sort of data entry task, the admin interface simply can’t be beat. We suspect that the
vast majority of readers of this book will have a whole host of data entry tasks.

Django’s admin interface especially shines when nontechnical users need to be able to enter
data; that’s the purpose behind the feature, after all. At the newspaper where Django was
first developed, development of a typical online feature — a special report on water quality
in the municipal supply, say — goes something like this:

= The reporter responsible for the story meets with one of the developers and goes over
the available data.

= The developer designs a model around this data and then opens up the admin interface
to the reporter.

= While the reporter enters data into Django, the programmer can focus on developing the
publicly accessible interface (the fun part!).

In other words, the raison d’étre of Django’s admin interface is facilitating the simultaneous
work of content producers and programmers.

However, beyond the obvious data entry tasks, we find the admin interface useful in a few
other cases:

= Inspecting data models: The first thing we do when we’ve defined a new model is to call
it up in the admin interface and enter some dummy data. This is usually when we find
any data modeling mistakes; having a graphical interface to a model quickly reveals
problems.

= Managing acquired data: There’s little actual data entry associated with a site like
http://chi cagocri ne. or g, since most of the data comes from an automated source.
However, when problems with the automatically acquired data crop up, it’s useful to be
able to go in and edit that data easily.

Django’s admin interface handles these common cases with little or no customization. As with most design
tradeoffs, though, handling these common cases so well means that Django’s admin interface doesn’t handle

http://www.djangobook.com/en/1.0/chapter17/[2009.01.07. 10:41:31]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 17: Extending Django's Admin Interface
some other modes of editing as well.

We'll talk about the cases Django’s admin interface isn’t designed to cover a bit later on, but first, let’s briefly
digress to a discussion on philosophy.

The Zen of Admin

At its core, Django’s admin interface is designed for a single activity:

Trusted users editing structured content.

Yes, it's extremely simple — but that simplicity is based on a whole host of assumptions. The entire philosophy
of Django’s admin interface follows directly from these assumptions, so let’s dig into the subtext of this phrase
in the sections that follow.

“Trusted users ...”

The admin interface is designed to be used by people whom you, the developer, trust. This doesn’t just mean
“people who have been authenticated”; it means that Django assumes that your content editors can be trusted
to do the right thing.

This in turn means that there’s no approval process for editing content — if you trust your users, nobody needs
to approve of their edits. Another implication is that the permission system, while powerful, has no support for
limiting access on a per-object basis as of this writing. If you trust someone to edit his or her own stories, you
trust that user not to edit anyone else’s stories without permission.

“.. editing ...”

The primary purpose of Django’s admin interface is to let people edit data. This seems obvious at first, but
again it has some subtle and powerful repercussions.

For instance, although the admin interface is quite useful for reviewing data (as just described), it's not
designed with that purpose in mind. For example, note the lack of a “can view” permission (see Chapter 12).
Django assumes that if people are allowed to view content in the admin interface, they’re also allowed to edit
it.

Another more important thing to note is the lack of anything even remotely approaching “workflow.” If a given
task requires a series of steps, there’s no support for enforcing that those steps be done in any particular
order. Django’s admin interface focuses on editing, not on activities surrounding editing. This avoidance of
workflow also stems from the principle of trust: the admin interface’s philosophy is that workflow is a personnel
issue, not something to be implemented in code.

Finally, note the lack of aggregation in the admin interface. That is, there’s no support for displaying totals,
averages, and so forth. Again, the admin interface is for editing — it's expected that you’ll write custom views
for all the rest.

.. structured content”

As with the rest of Django, the admin interface wants you to work with structured data. Thus, it only supports
editing data stored in Django models; for anything else, such as data stored on a filesystem, you’ll need
custom views.

Full Stop

It should be clear by now that Django’s admin interface does not try to be all things to all people; instead, we
choose to focus tightly on one thing and do that thing extremely well.

When it comes to extending Django’s admin interface, much of that same philosophy holds (note that
“extensibility” shows up nowhere in our goals). Because custom Django views can do anything, and because
they can easily be visually integrated into the admin interface (as described in the next section), the built-in

http://www.djangobook.com/en/1.0/chapter17/[2009.01.07. 10:41:31]

Chapter 17: Extending Django's Admin Interface
opportunities for customizing the admin interface are somewhat limited by design.

You should keep in mind that the admin interface is “just an app,” albeit a very complicated one. It doesn’t do
anything that any Django developer with sufficient time couldn’t reproduce. It’s entirely possible that in the
future someone will develop a different admin interface that is based on a different set of assumptions and
thus will behave differently.

Finally, we should point out that, as of this writing, Django developers were working on a new version of the
admin interface that allows for much more flexibility in customization. By the time you read this, those new
features may have made their way into the bona fide Django distribution. To find out, ask somebody in the
Django community whether the “newforms-admin” branch has been integrated.

Customizing Admin Templates

Out of the box, Django provides a number of tools for customizing the built-in admin templates, which we’ll go
over shortly, but for tasks beyond that (e.g., anything requiring custom workflow or granular permissions),
you’ll need to read the section titled “Creating Custom Admin Views” later in this chapter.

For now, though, let’s look at some quick ways of customizing the appearance (and, to some extent, behavior)
of the admin interface. Chapter 6 covers a few of the most common tasks: “rebranding” the Django admin
interface (for those pointy-haired bosses who hate blue) and providing a custom admin form.

Past that point, the goal usually involves changing some of the templates for a particular item. Each of the
admin views — the change lists, edit forms, delete confirmation pages, and history views — has an associated
template that can be overridden in a number of ways.

First, you can override the template globally. The admin view looks for templates using the standard template-
loading mechanism, so if you create templates in one of your template directories, Django will load those
instead of the default admin templates bundled with Django. These global templates are outlined in Table 17-

1.

Table 17-1. Global Admin Templates
View Base Template Name
Change list adm n/ change_list. htm
Add/edit form adm n/ change_form htm
Delete confirmation adm n/ del ete_confirmation. htm
Object history adm n/ obj ect _hi story. htnl

Most of the time, however, you’ll want to change the template for just a single object or application (not
globally). Thus, each admin view looks for model- and application-specific templates first. Those views look for
templates in this order:

= adm n/ <app_| abel >/ <obj ect _nane>/ <t enpl at e>. ht ni
= adm n/ <app_| abel >/ <t enpl at e>. ht ni
= admin/<tenplate>. htn

For example, the add/edit form view for a Book model in the books application looks for templates in this
order:

= adm n/ books/ book/ change_f orm ht mi
= adm n/ books/ change_f orm ht m

= adm n/ change_form htm

Custom Model Templates

http://www.djangobook.com/en/1.0/chapter17/[2009.01.07. 10:41:31]

Chapter 17: Extending Django's Admin Interface

Most of the time, you’ll want to use the first template to create a model-specific template. This is usually best
done by extending the base template and adding information to one of the blocks defined in that template.

For example, say we want to add a little bit of help text to the top of that book page. Maybe something like
the form shown in Figure 17-1.

Hslals) Add book | Django site admin

__ @ 3 http://localhost:8000/admin/ch6/book/add/ © B Qr Coogle ‘\'

Djan go administration Welcome, jacob. Documentation / Change password [Log out

| Home » Books

Add book———__

(Insert meaningful help message her

— —

e..)

Title: I

Publisher: S B

Publication Today | ()
date:

Authors: Daniel Friedman L
Matthias Felleisen
Erich Gamma

Bruce Schneier
Adrian Holovaty
Jacob Kaplan-Mass

Halc wn Cont r "Command T Mac, to select mo

(“Save and add another | ("Save and continue editing) ("Save)

P
" —

Figure 17-1. A customized admin edit form

This is pretty easy to do: simply create a template called adni n/ bookst or e/ book/ change_form ht Ml and
insert this code:

{% extends "adm n/change_formhtm " %

{% bl ock formtop %
<p>I nsert neani ngful help nmessage here...</p>
{% endbl ock %

All these templates define a number of blocks you can override. As with most programs, the best
documentation is the code, so we encourage you to look through the admin templates (they’re in
dj ango/ contri b/ adm n/t enpl at es/) for the most up-to-date information.

Custom JavaScript

A common use for these custom model templates involves adding custom JavaScript to admin pages —
perhaps to implement some special widget or client-side behavior.

Luckily, that couldn’t be easier. Each admin template defines a { % bl ock extrahead % , which you can use to
put extra content into the <head> element. For example, if you want to include jQuery (http://jguery.com/) in
your admin history, it's as simple as this:

{% ext ends "adm n/object history.htm" 9%

{% bl ock extrahead %

http://www.djangobook.com/en/1.0/chapter17/[2009.01.07. 10:41:31]

http://jquery.com/

Chapter 17: Extending Django's Admin Interface

<script src="http://nedia.exanpl e.com javascript/jquery.js"
type="text/javascript"></script>
<script type="text/javascript">

/1 code to actually use jQuery here...

</script>
{% endbl ock %

Note

We’'re not sure why you’d need jQuery on the object history page, but, of course, this example
applies to any of the admin templates.

You can use this technique to include any sort of extra JavaScript widgets you might need.

Creating Custom Admin Views

At this point, anyone looking to add custom behavior to Django’s admin interface is probably starting to get a
bit frustrated. “All you've talked about is how to change the admin interface visually,” we hear them cry. “But
how do I change the way the admin interface works?”

The first thing to understand is that it's not magic. That is, nothing the admin interface does is “special” in any
way — the admin interface is just a set of views (they live in dj ango. contri b. adm n. vi ews) that manipulate
data just like any other view.

Sure, there’s quite a bit of code in there; it has to deal with all the various options, field types, and settings
that influence model behavior. Still, when you realize that the admin interface is just a set of views, adding
custom admin views becomes easier to understand.

By way of example, let’'s add a “publisher report” view to our book application from Chapter 6. We’ll build an
admin view that shows the list of books broken down by publisher — a pretty typical example of a custom
admin “report” view you might need to build.

First, let’'s wire up a view in our URLconf. We need to insert this line:
(r'~adm n/ books/report/$', 'nysite.books.adm n_views.report'),
before the line including the admin views. A bare-bones URLconf might look like this:

from dj ango. conf.urls.defaults inport *

url patterns = patterns('',
(r'~adm n/ bookstore/report/$', 'bookstore.admn n_views.report'),
(r'~admn/', include('django.contrib.adm n.urls")),

Why put the custom view before the admin inclusion? Recall that Django processes URL patterns in order. The
admin inclusion matches nearly anything that falls under the inclusion point, so if we reverse the order of those
lines, Django will find a built-in admin view for that pattern, which won’t work. In this particular case, it will try
to load a change list for a Report model in the books application, which doesn’t exist.

Now let’s write our view. For the sake of simplicity, we’ll just load all books into the context and let the
template handle the grouping with the {% regroup % tag. Create a file, books/ admi n_vi ews. py, with this
code:

from nysite. books. nodel s i nport Book
from dj ango. tenpl ate i nport Request Cont ext

http://www.djangobook.com/en/1.0/chapter17/[2009.01.07. 10:41:31]

Chapter 17: Extending Django's Admin Interface

from dj ango. shortcuts inport render_to_response
from dj ango. contri b. adm n. vi ews. decorators inport staff_ nenber_required

def report(request):
return render _to_response(
"adm n/ books/report.htm ",
{" book_list' : Book.objects.all()},
Request Cont ext (request, {}),
)

report = staff_menber_required(report)

Because we left the grouping up to the template, this view is pretty simple. However, there are some subtle
bits here worth making explicit:

= We use the staff _nenber _required decorator from dj ango. contri b. adm n. vi ews. decor ators. This is
similar to the | ogi n_r equi r ed decorator discussed in Chapter 12, but this decorator also checks that the
given user is marked as a “staff” member, and thus is allowed access to the admin interface.

This decorator protects all the built-in admin views and makes the authentication logic for your view
match the rest of the admin interface.

= We render a template located under admi n/ . While this isn’t strictly required, it's considered good practice
to keep all your admin templates grouped in an admi n directory. We’ve also put the template in a
directory named books after our application — also a best practice.

= We use Request Cont ext as the third parameter (cont ext _i nstance) to render _t o_r esponse. This
ensures that information about the current user is available to the template.

See Chapter 10 for more about Request Cont ext .

Finally, we’ll make a template for this view. We’ll extend the built-in admin templates to make this view
visually appear to be part of the admin interface:

{% extends "adm n/base_site.htm" %
{% block title % List of books by publisher{% endbl ock %

{% bl ock content %
<di v id="content-nmain">
<h1>Li st of books by publisher:</hl>
{% regroup book list|dictsort:"publisher.nanme" by publisher as books_by publisher %
{% for publisher in books by publisher %
<h3>{{ publisher. grouper }}</h3>

{% for book in publisher.list|dictsort:"title" %
{{ book }}</Ili>
{% endfor %
</ ul >
{% endfor %
</ di v>
{% endbl ock %

By extending adni n/ base_site. ht ml , we get the look and feel of the Django admin “for free.” Figure 17-2
shows what the end result looks like.

http://www.djangobook.com/en/1.0/chapter17/[2009.01.07. 10:41:31]

Chapter 17: Extending Django's Admin Interface

alala) List of books by publisher '
a b + | @ http://localhost:8000/admin/bookstore/report/ @ =1Q~ Coogle

DJ ango administration Welcame, jacob. Documentation / Change password [Log out

List of books by publisher:
Addison-Wesley

= [esign Patterns

Apress
= Pro C55 Technigues
= The Django Book

MIT Press

= The Little Schemer

Wiley
= Applied Cryptography

A
e

Figure 17-2. A custom “books by publisher” admin view

You can use this technique to add anything you can dream of to the admin interface. Remember that these so-
called custom admin views are really just normal Django views; you can use all the techniques you learn in the
rest of this book to provide as complex an admin interface as you need.

We’'ll close out this chapter with some ideas for custom admin views.

Overriding Built-in Views

At times the default admin views just don’t cut it. You can easily swap in your own custom view for any stage
of the admin interface; just let your URL “shadow” the built-in admin one. That is, if your view comes before
the default admin view in the URLconf, your view will be called instead of the default one.

For example, we could replace the built-in “create” view for a book with a form that lets the user simply enter
an ISBN. We could then look up the book’s information from http://isbn.nu/ and create the object
automatically.

The code for such a view is left as an exercise for the reader, but the important part is this URLconf snippet:
(r' ~adm n/ bookst or e/ book/ add/ $', ' nysite.books. adm n_vi ews. add_by isbn'),

If this bit comes before the admin URLs in your URLconf, the add_by_i sbn view will completely replace the
standard admin view.

We could follow a similar tack to replace a delete confirmation page, the edit page, or any other part of the
admin interface.

What’s Next?

If you're a native English speaker—and we expect that many readers of this English-language book are—you
might not have noticed one of the coolest features of the admin interface: it's available in almost 40 different
languages! This is made possible by Django’s internationalization framework (and the hard work of Django’s

http://www.djangobook.com/en/1.0/chapter17/[2009.01.07. 10:41:31]

http://isbn.nu/

Chapter 17: Extending Django's Admin Interface
volunteer translators). The next chapter explains how to use this framework to provide localized Django sites.

Avanti!

« previous ¢ table of contents next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter17/[2009.01.07. 10:41:31]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 18: Internationalization

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 18: Internationalization

Django was originally developed smack in the middle of the United States (literally; Lawrence, Kansas, is less
than 40 miles from the geographic center of the continental United States). Like most open source projects,
though, Django’s community grew to include people from all over the globe. As Django’s community became
increasingly diverse, internationalization and localization became increasingly important. Since many
developers have at best a fuzzy understanding of these terms, we’ll define them briefly.

Internationalization refers to the process of designing programs for the potential use of any locale. This
includes marking text (like Ul elements and error messages) for future translation, abstracting the display of
dates and times so that different local standards may be observed, providing support for differing time zones,
and generally making sure that the code contains no assumptions about the location if its users. You’'ll often
see “internationalization” abbreviated 118N (the number 18 refers to the number of letters omitted between
the initial “I” and the terminal “N”).

Localization refers to the process of actually translating an internationalized program for use in a particular
locale. You’ll sometimes see “localization” abbreviated as L10N.

Django itself is fully internationalized; all strings are marked for translation, and settings control the display of
locale-dependent values like dates and times. Django also ships with over 40 different localization files. If
you're not a native English speaker, there’s a good chance that Django is already is translated into your
primary language.

The same internationalization framework used for these localizations is available for you to use in your own
code and templates.

In a nutshell, you’ll need to add a minimal number of hooks to your Python code and templates. These hooks
are called translation strings. They tell Django, “This text should be translated into the end user’s language, if
a translation for this text is available in that language.”

Django takes care of using these hooks to translate Web applications, on the fly, according to users’ language
preferences.

Essentially, Django does two things:

= It lets developers and template authors specify which parts of their applications should be translatable.

= It uses that information to translate Web applications for particular users according to their language
preferences.

Note

Django’s translation machinery uses GNU get t ext (http://www.gnu.org/software/gettext/) via the
standard gett ext module that comes with Python.

If You Don’t Need Internationalization:

Django’s internationalization hooks are enabled by default, which incurs a small bit of overhead. If
you don’t use internationalization, you should set USE_| 18N = Fal se in your settings file. If

USE_| 18N is set to Fal se, then Django will make some optimizations so as not to load the
internationalization machinery.

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257
http://www.gnu.org/software/gettext/

Chapter 18: Internationalization

You'll probably also want to remove ' dj ango. cor e. cont ext _processors. i 18n" from your
TEMPLATE_CONTEXT_PROCESSORS setting.

Specifying Translation Strings in Python Code

Translation strings specify “This text should be translated.” These strings can appear in your Python code and
templates. It’s your responsibility to mark translatable strings; the system can only translate strings it knows
about.

Standard Translation Functions

Specify a translation string by using the function _() . (Yes, the name of the function is the underscore
character.) This function is available globally (i.e., as a built-in language); you don’'t have to import it.

In this example, the text "Wl cone to ny site." is marked as a translation string:

def ny_view(request):
output = _("Welcone to ny site.")
return Htt pResponse(out put)

The function dj ango. utils.transl ati on. gettext () is identical to (). This example is identical to the
previous one:

from dj ango.utils.translation inport gettext
def ny_view(request):
output = gettext("Welcone to nmy site.")
return Htt pResponse(out put)

Most developers prefer to use (), as it’s shorter.

Translation works on computed values. This example is identical to the previous two:

def ny_viewrequest):
words = ['Wlcone', '"to', 'ny', 'site.']
output = (' '.join(words))
return Htt pResponse(out put)

Translation works on variables. Again, here’s an identical example:

def ny_view(request):
sentence = 'Wlcone to ny site.'
out put = _(sentence)
return Htt pResponse(out put)

(The caveat with using variables or computed values, as in the previous two examples, is that Django’s
translation-string-detecting utility, make- nessages. py, won't be able to find these strings. More on
nake- nessages later.)

The strings you pass to _() or gettext () can take placeholders, specified with Python’s standard named-
string interpolation syntax, for example:

def ny_view(request, n):
output = ("%nane)s is nmy nane.') % {' nane': n}

return Htt pResponse(out put)

This technique lets language-specific translations reorder the placeholder text. For example, an English
translation may be "Adrian is my nane.", while a Spanish translation may be "Me ||l anp Adrian.", with the

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

Chapter 18: Internationalization

placeholder (the name) placed after the translated text instead of before it.

For this reason, you should use named-string interpolation (e.g., % nane) s) instead of positional interpolation
(e.g., % or %d). If you use positional interpolation, translations won’t be able to reorder placeholder text.

Marking Strings As No-op

Use the function dj ango. utils.transl ati on. gettext_noop() to mark a string as a translation string without
actually translating it at that moment. Strings thus marked aren’t translated until the last possible moment.

Use this approach if you have constant strings that should be stored in the original language — such as strings
in a database — but should be translated at the last possible point in time, such as when the string is
presented to the user.

Lazy Translation

Use the function dj ango. utils.transl ati on. gettext | azy() to translate strings lazily — when the value is
accessed rather than when the gettext | azy() function is called.

For example, to mark a fields’s hel p_t ext attribute as translatable, do the following:
fromdjango.utils.translation inmport gettext |azy

cl ass MyThi ng(nodel s. Mbdel) :
nane = nodel s. CharFi el d(hel p_text=gettext lazy('This is the help text'))

In this example, gettext | azy() stores a lazy reference to the string — not the actual translation. The
translation itself will be done when the string is used in a string context, such as template rendering on the
Django admin site.

If you don’t like the verbose name gettext _| azy, you can just alias it as _ (underscore), like so:
fromdjango.utils.translation inport gettext |azy as _

cl ass MyThi ng(nodel s. Mbdel) :
nane = nodels. CharField(help text= ("This is the help text'))

Always use lazy translations in Django models (otherwise they won’t be translated correctly on a per-user
basis). And it's a good idea to add translations for the field names and table names, too. This means writing
explicit ver bose_nane and ver bose_nane_pl ural options in the Met a class:

fromdjango.utils.translation inport gettext |azy as _

cl ass MyThi ng(nodel s. Mbdel) :
nane = nodels.CharField(_('nane'), help_text= ('This is the help text"))
cl ass Meta:
verbose_nane = _('nmy thing')
verbose _name_plural = _('nythings')

Pluralization
Use the function dj ango. utils.transl ati on. ngettext() to specify messages that have different singular and

plural forms, for example:

from django.utils.translation inmport ngettext
def hello_world(request, count):
page = ngettext(

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

Chapter 18: Internationalization

"there is % count)d object',

"there are % count)d objects', count
) % {'count': count}
return Htt pResponse(page)

ngett ext takes three arguments: the singular translation string, the plural translation string, and the number
of objects (which is passed to the translation languages as the count variable).

Specifying Translation Strings in Template Code

Using translations in Django templates uses two template tags and a slightly different syntax than in Python
code. To give your template access to these tags, put {% | oad i 18n % toward the top of your template.

The {% trans % template tag marks a string for translations:

<title>{%trans "This is the title." %</title>

If you only want to mark a value for translation, but translate it later, use the noop option:
<title>{% trans "val ue" noop %</title>

It's not possible to use template variables in {% trans % — only constant strings, in single or double quotes,
are allowed. If your translations require variables (placeholders), use { % bl ocktrans % , for example:

{% bl ocktrans % This will have {{ value }} inside.{% endbl ocktrans %

To translate a template expression — say, using template filters — you need to bind the expression to a local
variable for use within the translation block:

{% bl ocktrans with value|filter as nyvar %
This will have {{ nmyvar }} inside.
{% endbl ocktrans %

If you need to bind more than one expression inside a bl ocktrans tag, separate the pieces with and:

{% bl ocktrans with book|title as book t and author|title as author_t 9%
This is {{ book_ t }} by {{ author_t }}
{% endbl ocktrans %

To pluralize, specify both the singular and plural forms with the {% pl ural 9% tag, which appears within
{% bl ocktrans % and {% endbl ocktrans % , for example:

{% bl ocktrans count list|length as counter %
There is only one {{ nane }} object.
{% plural %
There are {{ counter }} {{ nanme }} objects.
{% endbl ocktrans %

Internally, all block and inline translations use the appropriate gett ext /ngettext call.

When you use Request Cont ext (see Chapter 10), your templates have access to three translation-specific
variables:

» {{ LANGUAGES }} is a list of tuples in which the first element is the language code and the second is the
language name (in that language).

= {{ LANGUAGE CODE }} is the current user’s preferred language, as a string (e.g., en- us). (See the “How
Django Discovers Language Preference” section for more information.)

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

Chapter 18: Internationalization

= {{ LANGUAGE BI DI }} is the current language’s writing system. If Tr ue, it's a right-to-left language (e.g.,
Hebrew, Arabic). If Fal se, it’s a left-to-right language (e.g., English, French, German).

You can also load these values using template tags:

{% | oad i18n %

{% get _current | anguage as LANGUAGE CODE %

{% get _avail abl e_| anguages as LANGUAGES %

{% get _current _| anguage_bi di as LANGUAGE BI DI %

Translation hooks are also available within any template block tag that accepts constant strings. In those
cases, just use _() syntax to specify a translation string, for example:

{% sone_special _tag _("Page not found") val ue|yesno: ("yes,no") %

In this case, both the tag and the filter will see the already-translated string (i.e., the string is translated
before being passed to the tag handler functions), so they don’t need to be aware of translations.

Creating Language Files

Once you’ve tagged your strings for later translation, you need to write (or obtain) the language translations
themselves. In this section we explain how that works.

Creating Message Files

The first step is to create a message file for a new language. A message file is a plain-text file representing a
single language that contains all available translation strings and how they should be represented in the given
language. Message files have a . po file extension.

Django comes with a tool, bi n/ make- nessages. py, that automates the creation and maintenance of these
files.

To create or update a message file, run this command:
bi n/ make- nessages. py -1 de

where de is the language code for the message file you want to create. The language code, in this case, is in
locale format. For example, it's pt _BR for Brazilian Portuguese and de_AT for Austrian German. Take a look at
thelanguage codes in the dj ango/ conf/ | ocal e/ directory to see which languages are currently supported.

The script should be run from one of three places:

= The root dj ango directory (not a Subversion checkout, but the one that is linked to via $PYTHONPATH or is
located somewhere on that path)

= The root directory of your Django project

= The root directory of your Django application

The script runs over the entire tree it is run on and pulls out all strings marked for translation. It creates (or
updates) a message file in the directory conf/ | ocal e. In the de example, the file will be
conf/ | ocal e/ de/ LC_MESSACGES/ dj ango. po.

If run over your project source tree or your application source tree, it will do the same, but the location of the
locale directory is | ocal e/ LANG LC_MESSAGES (note the missing conf prefix). The first time you run it on your
tree you’ll need to create the | ocal e directory.

No gettext?

If you don’t have the gett ext utilities installed, make- nessages. py will create empty files. If

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

Chapter 18: Internationalization

that’s the case, either install the gett ext utilities or just copy the English message file
(conf /| ocal e/ en/ LC_MESSAGES/ dj ango. po) and use it as a starting point; it's just an empty
translation file.

The format of . po files is straightforward. Each . po file contains a small bit of metadata, such as the
translation maintainer’s contact information, but the bulk of the file is a list of messages — simple mappings
between translation strings and the actual translated text for the particular language.

For example, if your Django application contains a translation string for the text "Wl cone to ny site.", like

SO:
_("Welcone to ny site.")

then make- nessages. py will have created a . po file containing the following snippet — a message:

#. pat h/to/ pyt hon/ nodul e. py: 23
nsgid "Welcome to ny site.”
msgstr ""

A quick explanation is in order:

= nsgi d is the translation string, which appears in the source. Don’t change it.

= nsgstr is where you put the language-specific translation. It starts out empty, so it's your responsibility
to change it. Make sure you keep the quotes around your translation.

= As a convenience, each message includes the file name and line number from which the translation string
was gleaned.

Long messages are a special case. The first string directly after nsgstr (or nsgi d) is an empty string. Then the
content itself will be written over the next few lines as one string per line. Those strings are directly
concatenated. Don’t forget trailing spaces within the strings; otherwise, they’ll be tacked together without

whitespace!

For example, here’s a multiline translation (taken from the Spanish localization that ships with Django):
nsgid ""

"There's been an error. It's been reported to the site adnmnistrators via e-"
“mail and should be fixed shortly. Thanks for your patience."

msgstr ""

"Ha ocurrido un error. Se ha informado a | os admi nistradores del sitio
“medi ante correo electrénico y deberia arreglarse en breve. Gacias por su
"paci enci a. "

Note the trailing spaces.

Mind Your Charset

When creating a . po file with your favorite text editor, first edit the charset line (search for
" CHARSET") and set it to the charset you'll be using to edit the content. Generally, UTF-8 should
work for most languages, but get t ext should handle any charset you throw at it.

To reexamine all source code and templates for new translation strings and update all message files for all
languages, run this:

make- messages. py -a

Compiling Message Files

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

Chapter 18: Internationalization

After you create your message file, and each time you make changes to it, you’ll need to compile it into a
more efficient form, for use by get t ext . Do this with the bi n/ conpi | e- nessages. py utility.

This tool runs over all available . po files and creates . no files, which are binary files optimized for use by
gettext . In the same directory from which you ran nake- nessages. py, run conpi | e- nessages. py like this:

bi n/ conpi | e- nessages. py

That's it. Your translations are ready for use.

How Django Discovers Language Preference

Once you’'ve prepared your translations — or, if you just want to use the translations that are included with
Django — you’ll just need to activate translation for your application.

Behind the scenes, Django has a very flexible model of deciding which language should be used — installation-
wide, for a particular user, or both.

To set an installation-wide language preference, set LANGUAGE_CCDE in your settings file. Django uses this
language as the default translation — the final attempt if no other translator finds a translation.

If all you want to do is run Django with your native language, and a language file is available for your
language, simply set LANGUAGE CODE.

If you want to let each individual user specify the language he or she prefers, use Local eM ddl ewar e.
Local eM ddl ewar e enables language selection based on data from the request. It customizes content for each
user.

To use Local eM ddl ewar e, add ' dj ango. mi ddl ewar e. | ocal e. Local eM ddl eware' to your
M DDLEWARE_CLASSES setting. Because middleware order matters, you should follow these guidelines:

Make sure it’'s among the first middleware classes installed.

It should come after Sessi onM ddl ewar e, because Local eM ddl ewar e makes use of session data.

= |If you use CacheM ddl ewar e, put Local eM ddl ewar e after it (otherwise users could get cached content
from the wrong locale).

For example, your M DDLEWARE_CLASSES might look like this:

M DDLEWARE_CLASSES = (
' dj ango. m ddl ewar e. conrmon. CommonM ddl ewar e' ,
' dj ango. contri b. sessi ons. m ddl ewar e. Sessi onM ddl ewar e' ,
' dj ango. m ddl ewar e. | ocal e. Local eM ddl ewar e'

Local eM ddl ewar e tries to determine the user’s language preference by following this algorithm:

First, it looks for a dj ango_| anguage key in the current user’s session.
» Failing that, it looks for a cookie called dj ango_| anguage.

= Failing that, it looks at the Accept - Language HTTP header. This header is sent by your browser and tells
the server which language(s) you prefer, in order of priority. Django tries each language in the header
until it finds one with available translations.

= Failing that, it uses the global LANGUAGE CODE setting.

In each of these places, the language preference is expected to be in the standard language format, as a
string. For example, Brazilian Portuguese is pt - br . If a base language is available but the sub-language
specified is not, Django uses the base language. For example, if a user specifies de- at (Austrian German) but
Django only has de available, Django uses de.

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

Chapter 18: Internationalization

Only languages listed in the LANGUAGES setting can be selected. If you want to restrict the language selection
to a subset of provided languages (because your application doesn’t provide all those languages), set your
LANGUAGES setting to a list of languages, for example:

LANGUAGES = (
("de', ('German')),
(en', _('English)),

This example restricts languages that are available for automatic selection to German and English (and any
sub-language, like de- ch or en- us).

If you define a custom LANGUAGES, it's OK to mark the languages as translation strings — but use a “dummy”
gettext () function, not the one in dj ango. utils.transl ati on. You should never import

dj ango. util s.transl ati on from within your settings file, because that module itself depends on the settings,
and that would cause a circular import.

The solution is to use a “dummy” gettext () function. Here’s a sample settings file:

_ = lanbda s: s

LANGUAGES = (
("de', ('German')),
(‘en', _('English)),

With this arrangement, nake- messages. py will still find and mark these strings for translation, but the
translation won't happen at runtime, so you’ll have to remember to wrap the languages in the real gettext ()
in any code that uses LANGUACES at runtime.

The Local eM ddl ewar e can only select languages for which there is a Django-provided base translation. If you
want to provide translations for your application that aren’t already in the set of translations in Django’s source
tree, you’ll want to provide at least basic translations for that language. For example, Django uses technical
message IDs to translate date formats and time formats — so you will need at least those translations for the
system to work correctly.

A good starting point is to copy the English . po file and to translate at least the technical messages, and
maybe the validator messages, too.

Technical message IDs are easily recognized; they’re all uppercase. You don’t translate the message ID as
with other messages; rather, you provide the correct local variant on the provided English value. For example,
with DATETI ME_FORVAT (or DATE_FORVAT or Tl ME_FORMAT), this would be the format string that you want to use
in your language. The format is identical to the format strings used by the now template tag.

Once Local eM ddl ewar e determines the user’s preference, it makes this preference available as
request . LANGUAGE _CODE for each request object. Feel free to read this value in your view code. Here's a
simple example:

def hello_world(request, count):
i f request. LANGUAGE CODE == 'de-at':
return HttpResponse("You prefer to read Austrian Gernan.")
el se:
return Htt pResponse(”"You prefer to read another |anguage.")

Note that, with static (i.e. without middleware) translation, the language is in setti ngs. LANGUAGE_CODE, while
with dynamic (middleware) translation, it's in r equest . LANGUAGE CODE.

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

Chapter 18: Internationalization

The set_language Redirect View

As a convenience, Django comes with a view, dj ango. vi ews. i 18n. set _| anguage, that sets a user’s language
preference and redirects back to the previous page.

Activate this view by adding the following line to your URLconf:
(r'~i18n/', include('django.conf.urls.i1l8n")),

(Note that this example makes the view available at /i 18n/ set| ang/ .)

The view expects to be called via the GET method, with a | anguage parameter set in the query string. If
session support is enabled, the view saves the language choice in the user’s session. Otherwise, it saves the
language choice in a dj ango_| anguage cookie.

After setting the language choice, Django redirects the user, following this algorithm:

= Django looks for a next parameter in the query string.
= If that doesn’t exist or is empty, Django tries the URL in the Ref er er header.

= If that's empty — say, if a user’s browser suppresses that header — then the user will be redirected to /
(the site root) as a fallback.

Here’s example HTML template code:

<form action="/i18n/setl ang/" nethod="get">

<i nput nanme="next" type="hi dden" val ue="/next/page/" />
<sel ect nanme="| anguage" >

{% for lang in LANGUAGES %

<option value="{{ lang.0 }}">{{ lang.1 }}</option>

{% endfor %

</ sel ect>

<i nput type="submit" val ue="Go" />

</fornp

Using Translations in Your Own Projects

Django looks for translations by following this algorithm:

= First, it looks for a | ocal e directory in the application directory of the view that’s being called. If it finds a
translation for the selected language, the translation will be installed.

= Next, it looks for a | ocal e directory in the project directory. If it finds a translation, the translation will be
installed.

= Finally, it checks the base translation in dj ango/ conf/ | ocal e.
This way, you can write applications that include their own translations, and you can override base translations

in your project path. Or, you can just build a big project out of several applications and put all translations into
one big project message file. The choice is yours.

Note

If you're using manually configured settings, the | ocal e directory in the project directory will not
be examined, since Django loses the ability to work out the location of the project directory.
(Django normally uses the location of the settings file to determine this, and a settings file doesn’t
exist if you’re manually configuring your settings.)

All message file repositories are structured the same way:

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

Chapter 18: Internationalization

= $APPPATH | ocal e/ <l anguage>/ LC_MESSAGES/ dj ango. (po| no)
= $PROJECTPATH | ocal e/ <l anguage>/ LC_MESSAGES/ dj ango. (po| nD)

= All paths listed in LOCALE_PATHS in your settings file are searched in that order for
<l anguage>/ LC_MESSACES/ dj ango. (po| nD)

= $PYTHONPATH dj ango/ conf /| ocal e/ <l anguage>/ LC_MESSAGES/ dj ango. (po| np)

To create message files, you use the same nake- nessages. py tool as with the Django message files. You only
need to be in the right place — in the directory where either the conf/| ocal e (in case of the source tree) or
the | ocal e/ (in case of application messages or project messages) directory is located. And you use the same
conpi | e- nessages. py to produce the binary dj ango. no files that are used by gettext.

Application message files are a bit complicated to discover — they need the Local eM ddl ewar e. If you don’t
use the middleware, only the Django message files and project message files will be processed.

Finally, you should give some thought to the structure of your translation files. If your applications need to be
delivered to other users and will be used in other projects, you might want to use application-specific
translations. But using application-specific translations and project translations could produce weird problems
with nake- nessages. nake- nessages will traverse all directories below the current path and so might put
message IDs into the project message file that are already in application message files.

The easiest way out is to store applications that are not part of the project (and so carry their own
translations) outside the project tree. That way, make- nessages on the project level will only translate strings
that are connected to your explicit project and not strings that are distributed independently.

Translations and JavaScript

Adding translations to JavaScript poses some problems:

= JavaScript code doesn’t have access to a gettext implementation.
= JavaScript code doesn’t have access to . po or . no files; they need to be delivered by the server.

= The translation catalogs for JavaScript should be kept as small as possible.

Django provides an integrated solution for these problems: it passes the translations into JavaScript, so you
can call gettext and friends from within JavaScript.

The javascript_catalog View

The main solution to these problems is the j avascri pt _cat al og view, which generates a JavaScript code
library with functions that mimic the gett ext interface, plus an array of translation strings. Those translation
strings are taken from the application, project, or Django core, according to what you specify in either the

i nfo_dict or the URL.

You hook it up like this:

js_info_ dict = {
' packages': ('your.app. package',),

url patterns = patterns('’',
(r'”"jsil18n/$', 'django.views.il1l8n.javascript_catalog', js_info_dict),

Each string in packages should be in Python dotted-package syntax (the same format as the strings in

| NSTALLED_APPS) and should refer to a package that contains a | ocal e directory. If you specify multiple
packages, all those catalogs are merged into one catalog. This is useful if you're depending upon JavaScript
that uses strings from different applications.

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

Chapter 18: Internationalization

You can make the view dynamic by putting the packages into the URL pattern:
url patterns = patterns('’',

(r'~jsil8n/(?P<packages>\S+?)/$, 'django.views.il8n.javascript_catalog'),

With this, you specify the packages as a list of package names delimited by plus signs (+) in the URL. This is
especially useful if your pages use code from different applications, and this changes often and you don’t want
to pull in one big catalog file. As a security measure, these values can only be either dj ango. conf or any
package from the | NSTALLED APPS setting.

Using the JavaScript Translation Catalog

To use the catalog, just pull in the dynamically generated script like this:
<script type="text/javascript" src="/path/to/jsil8n/"></script>

This is how the admin site fetches the translation catalog from the server. When the catalog is loaded, your
JavaScript code can use the standard gett ext interface to access it:

docunent. wite(gettext('this is to be translated));

There even is a nget t ext interface and a string interpolation function:

d = {
count: 10
3
s = interpolate(ngettext('this is %count)s object', '"this are %count)s objects',
d.count), d);

The i nt er pol at e function supports both positional interpolation and named interpolation. So the preceding
code could have been written as follows:

s = interpolate(ngettext('this is % object', 'this are % objects', 11), [11]);

The interpolation syntax is borrowed from Python. You shouldn’t go over the top with string interpolation,
though — this is still JavaScript, so the code will have to do repeated regular-expression substitutions. This
isn’t as fast as string interpolation in Python, so keep it to those cases where you really need it (e.g., in
conjunction with ngett ext to produce proper pluralization).

Creating JavaScript Translation Catalogs

You create and update the translation catalogs the same way as the other Django translation catalogs: with
the " nake- nessages. py tool. The only difference is you need to provide a - d dj angoj s parameter, like this:

make- messages. py -d djangojs -I de

This creates or updates the translation catalog for JavaScript for German. After updating translation catalogs,
just run conpi | e- nessages. py the same way as you do with normal Django translation catalogs.

Notes for Users Familiar with get t ext

If you know get t ext , you might note these special things in the way Django does translation:

= The string domain is dj ango or dj angoj s. The string domain is used to differentiate between different
programs that store their data in a common message-file library (usually / usr/ share/ | ocal e/). The
dj ango domain is used for Python and template translation strings, and is loaded into the global

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

Chapter 18: Internationalization

translation catalogs. The dj angoj s domain is only used for JavaScript translation catalogs to make sure
that those are as small as possible.

= Django only uses gettext and gettext_noop. That's because Django always uses DEFAULT_CHARSET
strings internally. There isn’'t much benefit to using ugett ext , because you’ll always need to produce
UTF-8 anyway.

= Django doesn’t use xget t ext alone. It uses Python wrappers around xgett ext and nsgf nt . That’s mostly
for convenience.

What’s Next?

This chapter mostly concludes our coverage of Django’s features. You should now know enough to start
producing your own Django sites.

However, writing the code is only the first step in deploying a successful Web site. The next two chapters cover
the things you'll need to know if you want your site to survive in the real world. Chapter 19 discuses how you
can secure your sites and your users from malicious attackers, and Chapter 20 details how to deploy a Django
application onto one or many servers.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter18/[2009.01.07. 10:41:43]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 19: Security

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 19: Security

The Internet can be a scary place.

These days, high-profile security gaffes seem to crop up on a daily basis. We’'ve seen viruses spread with
amazing speed, swarms of compromised computers wielded as weapons, a never-ending arms race against
spammers, and many, many reports of identify theft from hacked Web sites.

As Web developers, we have a duty to do what we can to combat these forces of darkness. Every Web
developer needs to treat security as a fundamental aspect of Web programming. Unfortunately, it turns out
that implementing security is hard — attackers need to find only a single vulnerability, but defenders have to
protect every single one.

Django attempts to mitigate this difficulty. It's designed to automatically protect you from many of the common
security mistakes that new (and even experienced) Web developers make. Still, it’'s important to understand
what these problems are, how Django protects you, and — most important — the steps you can take to make
your code even more secure.

First, though, an important disclaimer: We do not intend to present a definitive guide to every known Web
security exploit, and so we won'’t try to explain each vulnerability in a comprehensive manner. Instead, we’ll
give a short synopsis of security problems as they apply to Django.

The Theme of Web Security

If you learn only one thing from this chapter, let it be this:

Never — under any circumstances — trust data from the browser.

You never know who's on the other side of that HTTP connection. It might be one of your users, but it just as
easily could be a nefarious cracker looking for an opening.

Any data of any nature that comes from the browser needs to be treated with a healthy dose of paranoia. This
includes data that’s both “in band” (i.e., submitted from Web forms) and “out of band” (i.e., HTTP headers,
cookies, and other request information). It’s trivial to spoof the request metadata that browsers usually add
automatically.

Every one of the vulnerabilities discussed in this chapter stems directly from trusting data that comes over the
wire and then failing to sanitize that data before using it. You should make it a general practice to continuously
ask, “Where does this data come from?”

SQL Injection

SQL injection is a common exploit in which an attacker alters Web page parameters (such as GET/PCST data or
URLSs) to insert arbitrary SQL snippets that a naive Web application executes in its database directly. It's
probably the most dangerous — and, unfortunately, one of the most common — vulnerabilities out there.

This vulnerability most commonly crops up when constructing SQL “by hand” from user input. For example,
imagine writing a function to gather a list of contact information from a contact search page. To prevent
spammers from reading every single email in our system, we’ll force the user to type in someone’s username
before providing her email address:

http://www.djangobook.com/en/1.0/chapter19/[2009.01.07. 10:41:51]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 19: Security

def user _contacts(request):
user = request.CET["' usernane']
sql = "SELECT * FROM user_contacts WHERE username = '%';" % username
execute the SQL here...

Note

In this example, and all similar “don’t do this” examples that follow, we’ve deliberately left out
most of the code needed to make the functions actually work. We don’t want this code to work if
someone accidentally takes it out of context.

Though at first this doesn’t look dangerous, it really is.

First, our attempt at protecting our entire email list will fail with a cleverly constructed query. Think about what
happens if an attacker types "' OR 'a' ="' a" into the query box. In that case, the query that the string
interpolation will construct will be:

SELECT * FROM user_contacts WHERE usernane = '' OR 'a' = 'a';

Because we allowed unsecured SQL into the string, the attacker’s added OR clause ensures that every single
row is returned.

However, that’s the least scary attack. Imagine what will happen if the attacker submits
"' DELETE FROM user_contacts WHERE 'a' = "a'". We’ll end up with this complete query:

SELECT * FROM user _contacts WHERE usernane = ''; DELETE FROM user_contacts WHERE ' a'

a

Yikes! Where’d our contact list go?

The Solution

Although this problem is insidious and sometimes hard to spot, the solution is simple: never trust user-
submitted data, and always escape it when passing it into SQL.

The Django database API does this for you. It automatically escapes all special SQL parameters, according to
the quoting conventions of the database server you’re using (e.g., PostgreSQL or MySQL).

For example, in this API call:

foo.get list(bar__exact="'" OR 1=1")

Django will escape the input accordingly, resulting in a statement like this:
SELECT * FROM foos WHERE bar = '\' OR 1=1'

Completely harmless.
This applies to the entire Django database API, with a couple of exceptions:

= The wher e argument to the extra() method (see Appendix C). That parameter accepts raw SQL by
design.

= Queries done “by hand” using the lower-level database API.

In each of these cases, it's easy to keep yourself protected. In each case, avoid string interpolation in favor of
passing in bind parameters. That is, the example we started this section with should be written as follows:

from dj ango. db i nport connection

http://www.djangobook.com/en/1.0/chapter19/[2009.01.07. 10:41:51]

Chapter 19: Security

def user_contacts(request):
user = request.CET["' usernane']
sql = "SELECT * FROM user _contacts WHERE usernanme = 9%;"
cursor = connection. cursor()
cursor. execute(sqgl, [user])
... do something with the results

The low-level execut e method takes a SQL string with % placeholders and automatically escapes and inserts
parameters from the list passed as the second argument. You should always construct custom SQL this way.

Unfortunately, you can’t use bind parameters everywhere in SQL; they’'re not allowed as identifiers (i.e., table
or column names). Thus, if you need to, say, dynamically construct a list of tables from a POST variable, you'll
need to escape that name in your code. Django provides a function, dj ango. db. backend. quot e_nane, which
will escape the identifier according to the current database’s quoting scheme.

Cross-Site Scripting (XSS)

Cross-site scripting (XSS), is found in Web applications that fail to escape user-submitted content properly
before rendering it into HTML. This allows an attacker to insert arbitrary HTML into your Web page, usually in
the form of <scri pt > tags.

Attackers often use XSS attacks to steal cookie and session information, or to trick users into giving private
information to the wrong person (aka phishing).

This type of attack can take a number of different forms and has almost infinite permutations, so we’ll just look
at a typical example. Consider this extremely simple “Hello, World” view:

def say_ hell o(request):
nane = request.CET.get (' nane', 'world")
return render _to_response("hello.htm", {"nane" : nane})

This view simply reads a name from a GET parameter and passes that name to the hel | o. ht 1 template. We
might write a template for this view as follows:

<hl>Hel l o, {{ nanme }}!</hl>

So if we accessed htt p://exanpl e. conl hel | o/ nanme=Jacob, the rendered page would contain this:
<hl>Hel | o, Jacob! </ h1>

But wait — what happens if we access htt p://exanpl e. conf hel | o/ nane=<i >Jacob</i >? Then we get this:
<hl>Hel | o, <i>Jacob</i>!</h1>

Of course, an attacker wouldn’t use something as benign as <i > tags; he could include a whole set of HTML
that hijacked your page with arbitrary content. This type of attack has been used to trick users into entering
data into what looks like their bank’s Web site, but in fact is an XSS-hijacked form that submits their back
account information to an attacker.

The problem gets worse if you store this data in the database and later display it it on your site. For example,
MySpace was once found to be vulnerable to an XSS attack of this nature. A user inserted JavaScript into his
profile that automatically added him as your friend when you visited his profile page. Within a few days, he had
millions of friends.

Now, this may sound relatively benign, but keep in mind that this attacker managed to get his code — not
MySpace’s — running on your computer. This violates the assumed trust that all the code on MySpace is
actually written by MySpace.

http://www.djangobook.com/en/1.0/chapter19/[2009.01.07. 10:41:51]

Chapter 19: Security

MySpace was extremely lucky that this malicious code didn’t automatically delete viewers’ accounts, change
their passwords, flood the site with spam, or any of the other nightmare scenarios this vulnerability unleashes.

The Solution

The solution is simple: always escape any content that might have come from a user. If we simply rewrite our
template as follows:

<hl>Hel l o, {{ nane|escape }}!</hl>

then we’re no longer vulnerable. You should always use the escape tag (or something equivalent) when
displaying user-submitted content on your site.

Why Doesn’t Django Just Do This for You?

Modifying Django to automatically escape all variables displayed in templates is a frequent topic of
discussion on the Django developer mailing list.

So far, Django’s templates have avoided this behavior because it subtly changes what should be
relatively straightforward behavior (displaying variables). It's a tricky issue and a difficult tradeoff
to evaluate. Adding hidden implicit behavior is against Django’s core ideals (and Python'’s, for that
matter), but security is equally important.

All this is to say, then, that there’s a fair chance Django will grow some form of auto-escaping (or
nearly auto-escaping) behavior in the future. It's a good idea to check the official Django
documentation for the latest in Django features; it will always be more up to date than this book,
especially the print edition.

Even if Django does add this feature, however, you should still be in the habit of asking yourself,
at all times, “Where does this data come from?” No automatic solution will ever protect your site
from XSS attacks 100% of the time.

Cross-Site Request Forgery

Cross-site request forgery (CSRF) happens when a malicious Web site tricks users into unknowingly loading a
URL from a site at which they’re already authenticated — hence taking advantage of their authenticated status.

Django has built-in tools to protect from this kind of attack. Both the attack itself and those tools are covered
in great detail in Chapter 14.

Session Forging/Hijacking

This isn’t a specific attack, but rather a general class of attacks on a user’s session data. It can take a number
of different forms:

= A man-in-the-middle attack, where an attacker snoops on session data as it travels over the wire (or
wireless) network.

= Session forging, where an attacker uses a session ID (perhaps obtained through a man-in-the-middle
attack) to pretend to be another user.

An example of these first two would be an attacker in a coffee shop using the shop’s wireless network to
capture a session cookie. She could then use that cookie to impersonate the original user.

= A cookie-forging attack, where an attacker overrides the supposedly read-only data stored in a cookie.
Chapter 12 explains in detail how cookies work, and one of the salient points is that it’s trivial for
browsers and malicious users to change cookies without your knowledge.

There’s a long history of Web sites that have stored a cookie like | sLogged| n=1 or even

http://www.djangobook.com/en/1.0/chapter19/[2009.01.07. 10:41:51]

Chapter 19: Security

Loggedl nAsUser =j acob. It's dead simple to exploit these types of cookies.

On a more subtle level, though, it’'s never a good idea to trust anything stored in cookies; you never
know who’s been poking at them.

Session fixation, where an attacker tricks a user into setting or reseting the user’s session ID.

For example, PHP allows session identifiers to be passed in the URL (e.g.,
http://exanpl e. com ?PHPSESSI D=f a90197ca25f 6ab40bb1374c510d7a32). An attacker who tricks a user
into clicking a link with a hard-coded session ID will cause the user to pick up that session.

Session fixation has been used in phishing attacks to trick users into entering personal information into an
account the attacker owns. He can later log into that account and retrieve the data.

Session poisoning, where an attacker injects potentially dangerous data into a user’s session — usually
through a Web form that the user submits to set session data.

A canonical example is a site that stores a simple user preference (like a page’s background color) in a
cookie. An attacker could trick a user into clicking a link to submit a “color” that actually contains an XSS
attack; if that color isn’t escaped, the user could again inject malicious code into the user’s environment.

The Solution

There are a number of general principles that can protect you from these attacks:

Never allow session information to be contained in the URL.
Django’s session framework (see Chapter 12) simply doesn’t allow sessions to be contained in the URL.

Don’t store data in cookies directly; instead, store a session ID that maps to session data stored on the
back-end.

If you use Django’s built-in session framework (i.e., r equest . sessi on), this is handled automatically for
you. The only cookie that the session framework uses is a single session ID; all the session data is stored
in the database.

Remember to escape session data if you display it in the template. See the earlier XSS section, and
remember that it applies to any user-created content as well as any data from the browser. You should
treat session information as being user created.

Prevent attackers from spoofing session IDs whenever possible.

Although it’s nearly impossible to detect someone who’s hijacked a session ID, Django does have built-in
protection against a brute-force session attack. Session IDs are stored as hashes (instead of sequential
numbers), which prevents a brute-force attack, and a user will always get a new session ID if she tries a
nonexistent one, which prevents session fixation.

Notice that none of those principles and tools prevents man-in-the-middle attacks. These types of attacks are
nearly impossible to detect. If your site allows logged-in users to see any sort of sensitive data, you should
always serve that site over HTTPS. Additionally, if you have an SSL-enabled site, you should set the

SESSI ON_COOKI E_SECURE setting to Tr ue; this will make Django only send session cookies over HTTPS.

Email Header Injection

SQL injection’s less well-known sibling, email header injection, hijacks Web forms that send email. An attacker
can use this technique to send spam via your mail server. Any form that constructs email headers from Web
form data is vulnerable to this kind of attack.

Let’s look at the canonical contact form found on many sites. Usually this sends a message to a hard-coded
email address and, hence, doesn’t appear vulnerable to spam abuse at first glance.

http://www.djangobook.com/en/1.0/chapter19/[2009.01.07. 10:41:51]

Chapter 19: Security

However, most of these forms also allow the user to type in his own subject for the email (along with a “from”
address, body, and sometimes a few other fields). This subject field is used to construct the “subject” header
of the email message.

If that header is unescaped when building the email message, an attacker could submit something like
"hel | o\ ncc: spanvi cti m@xanpl e. cont' (where "\ n” is a newline character). That would make the constructed
email headers turn into:

To: hardcoded@xanpl e. com
Subj ect: hello
cc: spanvicti ma@xanpl e. com

Like SQL injection, if we trust the subject line given by the user, we’ll allow him to construct a malicious set of
headers, and he can use our contact form to send spam.

The Solution

We can prevent this attack in the same way we prevent SQL injection: always escape or validate user-
submitted content.

Django’s built-in mail functions (in dj ango. core. nai |) simply do not allow newlines in any fields used to
construct headers (the from and to addresses, plus the subject). If you try to use

dj ango. core. nai | . send_mai | with a subject that contains newlines, Django will raise a BadHeader Err or
exception.

If you do not use Django’s built-in mail functions to send email, you'll need to make sure that newlines in
headers either cause an error or are stripped. You may want to examine the Saf eM METext class in
dj ango. core. nai | to see how Django does this.

Directory Traversal

Directory traversal is another injection-style attack, wherein a malicious user tricks filesystem code into
reading and/or writing files that the Web server shouldn’t have access to.

An example might be a view that reads files from the disk without carefully sanitizing the file name:

def dunp_file(request):
filenane = request. CET["fil enane"]
filenane = os. path.joi n(BASE_PATH, fil enane)
content = open(filenane).read()

...

Though it looks like that view restricts file access to files beneath BASE_PATH (by using os. pat h. j oi n), if the
attacker passes in a fi | enane containing . . (that’s two periods, a shorthand for “the parent directory”), she
can access files “above” BASE_PATH. It's only a matter of time before she can discover the correct number of
dots to successfully access, say, . ./../../../../etc/passwd.

Anything that reads files without proper escaping is vulnerable to this problem. Views that write files are just
as vulnerable, but the consequences are doubly dire.

Another permutation of this problem lies in code that dynamically loads modules based on the URL or other
request information. A well-publicized example came from the world of Ruby on Rails. Prior to mid-2006, Rails
used URLs like htt p:// exanpl e. conl per son/ poke/ 1 directly to load modules and call methods. The result was
that a carefully constructed URL could automatically load arbitrary code, including a database reset script!

The Solution

http://www.djangobook.com/en/1.0/chapter19/[2009.01.07. 10:41:51]

Chapter 19: Security

If your code ever needs to read or write files based on user input, you need to sanitize the requested path
very carefully to ensure that an attacker isn’t able to escape from the base directory you’re restricting access
to.

= Needless to say, you should never write code that can read from any area of the disk!

A good example of how to do this escaping lies in Django’s built-in static content-serving view (in
dj ango. vi ews. stati c). Here’s the relevant code:

i mport os
i mport posi xpath

...

pat h = posi xpat h. nornpat h(url |i b. unquot e(pat h))
newpath = "'
for part in path.split('/"):
if not part:
strip enpty path components
conti nue

drive, part = os.path.splitdrive(part)
head, part = os.path.split(part)
if part in (os.curdir, os.pardir):
strip '.' and in path
conti nue

newpat h = os. path.join(newpath, part).replace('\\', '/")

Django doesn’t read files (unless you use the st ati c. serve function, but that’s protected with the code just
shown), so this vulnerability doesn’t affect the core code much.

In addition, the use of the URLconf abstraction means that Django will never load code you’ve not explicitly
told it to load. There’s no way to create a URL that causes Django to load something not mentioned in a
URLconf.

Exposed Error Messages

During development, being able to see tracebacks and errors live in your browser is extremely useful. Django
has “pretty” and informative debug messages specifically to make debugging easier.

However, if these errors get displayed once the site goes live, they can reveal aspects of your code or
configuration that could aid an attacker.

Furthermore, errors and tracebacks aren’t at all useful to end users. Django’s philosophy is that site visitors
should never see application-related error messages. If your code raises an unhandled exception, a site visitor
should not see the full traceback — or any hint of code snippets or Python (programmer-oriented) error
messages. Instead, the visitor should see a friendly “This page is unavailable” message.

Naturally, of course, developers need to see tracebacks to debug problems in their code. So the framework
should hide all error messages from the public, but it should display them to the trusted site developers.

The Solution

Django has a simple flag that controls the display of these error messages. If the DEBUG setting is set to Tr ue,

http://www.djangobook.com/en/1.0/chapter19/[2009.01.07. 10:41:51]

Chapter 19: Security

error messages will be displayed in the browser. If not, Django will render return an HTTP 500 (“Internal server
error”) message and render an error template that you provide. This error template is called 500. ht i and
should live in the root of one of your template directories.

Because developers still need to see errors generated on a live site, any errors handled this way will send an
email with the full traceback to any addresses given in the ADM NS setting.

Users deploying under Apache and mod_python should also make sure they have Pyt honDebug O f in their
Apache conf files; this will suppress any errors that occur before Django has had a chance to load.

A Final Word on Security

We hope all this talk of security problems isn’t too intimidating. It's true that the Web can be a wild and wooly
world, but with a little bit of foresight, you can have a secure Web site.

Keep in mind that Web security is a constantly changing field; if you're reading the dead-tree version of this
book, be sure to check more up to date security resources for any new vulnerabilities that have been
discovered. In fact, it's always a good idea to spend some time each week or month researching and keeping
current on the state of Web application security. It's a small investment to make, but the protection you’ll get
for your site and your users is priceless.

What’s Next

In the “next chapter™_, we’ll finally cover the subtleties of deploying Django: how to launch a production site
and how to set it up for scalability.

Docutils System Messages

System Message: ERROR/3 (<stri ng>, line 526); backlink

Unknown target name: “next chapter”.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter19/[2009.01.07. 10:41:51]

http://www.djangobook.com/license/
http://mediatemple.net/

Chapter 20: Deploying Django

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Chapter 20: Deploying Django

Throughout this book, we’ve mentioned a number of goals that drive the development of Django. Ease of use,
friendliness to new programmers, abstraction of repetitive tasks — these all drive Django’s developers.

However, since Django’s inception, there’s always been another important goal: Django should be easy to
deploy, and it should make serving large amounts of traffic possible with limited resources.

The motivations for this goal are apparent when you look at Django’s background: a small, family-owned
newspaper in Kansas can hardly afford top-of-the-line server hardware, so Django’s original developers were
concerned with squeezing the best possible performance out of limited resources. Indeed, for years Django’s
developers acted as their own system administrators — there simply wasn’t enough hardware to need
dedicated sysadmins — even as their sites handled tens of millions of hits a day.

As Django became an open source project, this focus on performance and ease of deployment became
important for a different reason: hobbyist developers have the same requirements. Individuals who want to
use Django are pleased to learn they can host a small- to medium-traffic site for as little as $10 a month.

But being able to scale down is only half the battle. Django also needs to be capable of scaling up to meet the
needs of large companies and corporations. Here, Django adopts a philosophy common among LAMP-like Web
stacks often called shared nothing.

What’s LAMP?

The acronym LAMP was originally coined to describe a popular set of open source software used
to drive many Web sites:

= Linux (operating system)

= Apache (Web server)

= MySQL (database)

= PHP (programming language)

Over time, though, the acronym has come to refer more to the philosophy of these types of open
source software stacks than to any one particular stack. So while Django uses Python and is
database-agnostic, the philosophies proven by the LAMP stack permeate Django’s deployment
mentality.

There have been a few (mostly humorous) attempts at coining a similar acronym to describe
Django’s technology stack. The authors of this book are fond of LAPD (Linux, Apache, PostgreSQL,
and Django) or PAID (PostgreSQL, Apache, Internet, and Django). Use Django and get PAID!

Shared Nothing

At its core, the philosophy of shared nothing is really just the application of loose coupling to the entire
software stack. This architecture arose in direct response to what was at the time the prevailing architecture: a
monolithic Web application server that encapsulates the language, database, and Web server — even parts of
the operating system — into a single process (e.g., Java).

When it comes time to scale, this can be a major problem; it’'s nearly impossible to split the work of a
monolithic process across many different physical machines, so monolithic applications require enormously

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Chapter 20: Deploying Django

powerful servers. These servers, of course, cost tens or even hundreds of thousands of dollars, putting large-
scale Web sites out of the reach of cash-hungry individuals and small companies.

What the LAMP community noticed, however, was that if you broke each piece of the Web stack up into
individual components, you could easily start with an inexpensive server and simply add more inexpensive
servers as you grew. If your $3,000 database server couldn’'t handle the load, you’d simply buy a second (or
third, or fourth) until it could. If you needed more storage capacity, you'd add an NFS server.

For this to work, though, Web applications had to stop assuming that the same server would handle each
request — or even each part of a single request. In a large-scale LAMP (and Django) deployment, as many as
half a dozen servers might be involved in handling a single page! The repercussions of this are numerous, but
they boil down to these points:

= State cannot be saved locally. In other words, any data that must be available between multiple requests
must be stored in some sort of persistent storage like the database or a centralized cache.

= Software cannot assume that resources are local. For example, the Web platform cannot assume that the
database runs on the same server; it must be capable of connecting to a remote database server.

= Each piece of the stack must be easily moved or replicated. If Apache for some reason doesn’t work for a
given deployment, you should be able to swap it out for another server with a minimum of fuss. Or, on a
hardware level, if a Web server fails, you should be able to replace it with another physical box with
minimum downtime. Remember, this whole philosophy is based around deployment on cheap, commodity
hardware. Failure of individual machines is to be expected.

As you’ve probably come to expect, Django handles this more or less transparently — no part of Django
violates these principles — but knowing the philosophy helps when it comes time to scale up.

But Does It Work?

This philosophy might sound good on paper (or on your screen), but does it actually work?

Well, instead of answering directly, let’s instead look at a by-no-means-complete list of a few
companies that have based their business on this architecture. You might recognize some of these
names:

= Amazon

= Blogger

= Craigslist
= Facebook
= Google

= LiveJournal
= Slashdot
= Wikipedia
= Yahoo

= YouTube

To paraphrase the famous scene from When Harry Met Sally...: “We’ll have what they’re having!”

A Note on Personal Preferences

Before we get into the details, a quick aside.

Open source is famous for its so-called religious wars; much (digital) ink has been spilled arguing over text
editors (enacs vs. vi), operating systems (Linux vs. Windows vs. Mac OS), database engines (MySQL vs.
PostgreSQL), and — of course — programming languages.

We try to stay away from these battles. There just isn’'t enough time.

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

Chapter 20: Deploying Django

However, there are a number of choices when it comes to deploying Django, and we’re constantly asked for

our preferences. Since stating these preferences comes dangerously close to firing a salvo in one of the

aforementioned battles, we’'ve mostly refrained. However, for the sake of completeness and full disclosure,

we’ll state them here. We prefer the following:

= Linux (Ubuntu, specifically) as our operating system
= Apache and mod_python for the Web server

= PostgreSQL as a database server

Of course, we can point to many Django users who have made other choices with great success.

Using Django with Apache and mod_python

Apache with mod_python currently is the most robust setup for using Django on a production server.

mod_python (http://www.djangoproject.com/r/mod_python/) is an Apache plug-in that embeds Python within
Apache and loads Python code into memory when the server starts. Code stays in memory throughout the life

of an Apache process, which leads to significant performance gains over other server arrangements.

Django requires Apache 2.x and mod_python 3.x, and we prefer Apache’s prefork MPM, as opposed to the

worker MPM.

Note

Configuring Apache is well beyond the scope of this book, so we’ll simply mention details as
needed. Luckily, a number of great resources are available if you need to learn more about
Apache. A few of them we like are as follows:

= The free online Apache documentation, available via
http://www.djangoproject.com/r/apache/docs/

= Pro Apache, Third Edition (Apress, 2004) by Peter Wainwright, available via
http://www.djangoproject.com/r/books/pro-apache/

= Apache: The Definitive Guide, Third Edition (O’Reilly, 2002) by Ben Laurie and Peter Laurie,

available via http://www.djangoproject.com/r/books/apache-pra/

Basic Configuration

To configure Django with mod_python, first make sure you have Apache installed with the mod_python module
activated. This usually means having a LoadModul e directive in your Apache configuration file. It will look

something like this:
LoadModul e pyt hon_nodul e /usr/1i b/ apache2/ nodul es/ nod_pyt hon. so
Then, edit your Apache configuration file and add the following:

<Location "/">
Set Handl er pyt hon- program
Pyt honHandl er dj ango. cor e. handl er s. nodpyt hon
Set Env. DJANGO_SETTI NGS_MODULE nysite. settings
Pyt honDebug On

</ Locat i on>

Make sure to replace nysite. settings with the appropriate DJANGO _SETTI NGS_MODULE for your site.

This tells Apache, “Use mod_python for any URL at or under ‘/’, using the Django mod_python handler.”

passes the value of DJANGO _SETTI NGS_MODULE so mod_python knows which settings to use.

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

It

http://www.djangoproject.com/r/mod_python/
http://www.djangoproject.com/r/apache/docs/
http://www.djangoproject.com/r/books/pro-apache/
http://www.djangoproject.com/r/books/apache-pra/

Chapter 20: Deploying Django

Note that we’re using the <Locat i on> directive, not the <Di r ect or y> directive. The latter is used for pointing
at places on your filesystem, whereas <Locat i on> points at places in the URL structure of a Web site.
<Di r ect or y> would be meaningless here.

Apache likely runs as a different user than your normal login and may have a different path and sys.path. You
may need to tell mod_python how to find your project and Django itself.

Pyt honPath "['/path/to/project', '/path/to/django’'] + sys.path"

You can also add directives such as Pyt honAut oRel oad O f for performance. See the mod_python
documentation for a full list of options.

Note that you should set Pyt honDebug O f on a production server. If you leave Pyt honDebug On, your users
will see ugly (and revealing) Python tracebacks if something goes wrong within mod_python.

Restart Apache, and any request to your site (or virtual host if you've put this directive inside a <Vi rt ual Host >
block) will be served by Django.

Note

If you deploy Django at a subdirectory — that is, somewhere deeper than “/” — Django won’t trim
the URL prefix off of your URLpatterns. So if your Apache config looks like this:

<Location "/nysite/">
Set Handl er pyt hon- program
Pyt honHandl er dj ango. core. handl er s. nodpyt hon
Set Env. DJANGO_SETTI NGS_MODULE mnysite. settings
Pyt honDebug On

</ Locati on>

then all your URL patterns will need to start with "/ nysite/" . For this reason we usually
recommend deploying Django at the root of your domain or virtual host. Alternatively, you can
simply shift your URL configuration down one level by using a shim URLconf:

url patterns = patterns('',
(r'~nysite/', include('normal.root.urls")),

Running Multiple Django Installations on the Same Apache Instance

It's entirely possible to run multiple Django installations on the same Apache instance. You might want to do
this if you're an independent Web developer with multiple clients but only a single server.

To accomplish this, just use Vi rtual Host like so:
NanmeVi r t ual Host *

<Vi rt ual Host *>

Server Nane www. exanpl e. com

#o.o..

Set Env. DJANGO_SETTI NGS_MODULE nysite. settings
</ Vi rt ual Host >

<Vi rtual Host *>
Server Nane www2. exanpl e. com
...
Set Env. DJANGO_SETTI NGS_MODULE nysi te. ot her _settings

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

Chapter 20: Deploying Django

</ Vi r t ual Host >

If you need to put two Django installations within the same Vi rt ual Host , you’ll need to take a special
precaution to ensure mod_python’s code cache doesn’t mess things up. Use the Pyt honl nt er pr et er directive
to give different <Locat i on> directives separate interpreters:

<Virtual Host *>
Server Name www. exanpl e. com
...
<Location "/sonething">
Set Env. DJANGO_SETTI NGS_MODULE nysite. settings
Pyt honl nterpreter nysite
</ Locati on>

<Location "/otherthing">
Set Env. DJANGO_SETTI NGS_MODULE nysi te. ot her _setti ngs
Pyt honl nt erpreter nysite_other
</ Locati on>
</ Vi rtual Host >

The values of Pyt honl nt er pret er don’t really matter, as long as they’re different between the two Locati on
blocks.

Running a Development Server with mod_python

Because mod_python caches loaded Python code, when deploying Django sites on mod_python you’ll need to
restart Apache each time you make changes to your code. This can be a hassle, so here’s a quick trick to avoid
it: just add MaxRequest sPer Chil d 1 to your config file to force Apache to reload everything for each request.
But don’t do that on a production server, or we’ll revoke your Django privileges.

If you're the type of programmer who debugs using scattered pri nt statements (we are), note that pri nt
statements have no effect in mod_python; they don’t appear in the Apache log, as you might expect. If you
have the need to print debugging information in a mod_python setup, you’ll probably want to use Python’s
standard logging package. More information is available at http://docs.python.org/lib/module-logging.html.
Alternatively, you can or add the debugging information to the template of your page.

Serving Django and Media Files from the Same Apache Instance

Django should not be used to serve media files itself; leave that job to whichever Web server you choose. We
recommend using a separate Web server (i.e., one that’s not also running Django) for serving media. For more
information, see the “Scaling” section.

If, however, you have no option but to serve media files on the same Apache Vi rt ual Host as Django, here’s
how you can turn off mod_python for a particular part of the site:

<Location "/nedia/">
Set Handl er None
</ Locati on>

Change Locat i on to the root URL of your media files.

You can also use <Locat i onMat ch> to match a regular expression. For example, this sets up Django at the site
root but explicitly disables Django for the nedi a subdirectory and any URL that ends with . j pg, .gif, or . png:

<Location "/">

Set Handl er pyt hon- program
Pyt honHandl er dj ango. core. handl er s. nodpyt hon

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

http://docs.python.org/lib/module-logging.html

Chapter 20: Deploying Django

Set Env. DJANGO_SETTI NGS_MODULE nysite. settings
</ Locati on>

<Location "/nedia/">
Set Handl er None
</ Locati on>

<LocationMatch "\. (jpg|gif]|png)$">
Set Handl er None
</ Locat i oniat ch>

In all of these cases, you’ll need to set the Docunent Root directive so Apache knows where to find your static
files.

Error Handling

When you use Apache/mod_python, errors will be caught by Django — in other words, they won’t propagate to
the Apache level and won’t appear in the Apache error_| og.

The exception to this is if something is really messed up in your Django setup. In that case, you’ll see an
“Internal Server Error” page in your browser and the full Python traceback in your Apache error _| og file. The
error_| og traceback is spread over multiple lines. (Yes, this is ugly and rather hard to read, but it's how
mod_python does things.)

Handling a Segmentation Fault

Sometimes, Apache segfaults when you install Django. When this happens, it's almost always one of two
causes mostly unrelated to Django itself:

= It may be that your Python code is importing the pyexpat module (used for XML parsing), which may
conflict with the version embedded in Apache. For full information, see “Expat Causing Apache Crash” at
http://www.djangoproject.com/r/articles/expat-apache-crash/.

= It may be because you’re running mod_python and mod_php in the same Apache instance, with MySQL as
your database back-end. In some cases, this causes a known mod_python issue due to version conflicts in
PHP and the Python MySQL back-end. There’s full information in a mod_python FAQ entry, accessible via
http://www.djangoproject.com/r/articles/php-modpython-faq/.

If you continue to have problems setting up mod_python, a good thing to do is get a bare-bones mod_python

site working, without the Django framework. This is an easy way to isolate mod_python-specific problems. The
article “Getting mod_python Working” details this procedure: http://www.djangoproject.com/r/articles/getting-
modpython-working/.

The next step should be to edit your test code and add an import of any Django-specific code you're using —
your views, your models, your URLconf, your RSS configuration, and so forth. Put these imports in your test
handler function and access your test URL in a browser. If this causes a crash, you’'ve confirmed it's the
importing of Django code that causes the problem. Gradually reduce the set of imports until it stops crashing,
so as to find the specific module that causes the problem. Drop down further into modules and look into their
imports as necessary. For more help, system tools like | dconfi g on Linux, ot ool on Mac OS, and Li st DLLs
(from Syslinternals) on Windows can help you identify shared dependencies and possible version conflicts.

Using Django with FastCGl

Although Django under Apache and mod_python is the most robust deployment setup, many people use shared
hosting, on which FastCGl is the only available deployment option.

Additionally, in some situations, FastCGI allows better security and possibly better performance than
mod_python. For small sites, FastCGI can also be more lightweight than Apache.

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

http://www.djangoproject.com/r/articles/expat-apache-crash/
http://www.djangoproject.com/r/articles/php-modpython-faq/
http://www.djangoproject.com/r/articles/getting-modpython-working/
http://www.djangoproject.com/r/articles/getting-modpython-working/

Chapter 20: Deploying Django

FastCGI Overview

FastCGl is an efficient way of letting an external application serve pages to a Web server. The Web server
delegates the incoming Web requests (via a socket) to FastCGI, which executes the code and passes the
response back to the Web server, which, in turn, passes it back to the client’'s Web browser.

Like mod_python, FastCGI allows code to stay in memory, allowing requests to be served with no startup time.
Unlike mod_python, a FastCGI process doesn’t run inside the Web server process, but in a separate, persistent
process.

Why Run Code in a Separate Process?

The traditional nod_* arrangements in Apache embed various scripting languages (most notably
PHP, Python/mod_python, and Perl/mod_perl) inside the process space of your Web server.
Although this lowers startup time (because code doesn’t have to be read off disk for every
request), it comes at the cost of memory use.

Each Apache process gets a copy of the Apache engine, complete with all the features of Apache
that Django simply doesn’t take advantage of. FastCGI processes, on the other hand, only have
the memory overhead of Python and Django.

Due to the nature of FastCGl, it's also possible to have processes that run under a different user
account than the Web server process. That's a nice security benefit on shared systems, because it
means you can secure your code from other users.

Before you can start using FastCGI with Django, you’ll need to install f | up, a Python library for dealing with
FastCGIl. Some users have reported stalled pages with older f | up versions, so you may want to use the latest
SVN version. Get f | up at http://www.djangoproject.com/r/flup/.

Running Your FastCGl Server

FastCGI operates on a client/server model, and in most cases you'll be starting the FastCGI server process on
your own. Your Web server (be it Apache, lighttpd, or otherwise) contacts your Django-FastCGI process only

when the server needs a dynamic page to be loaded. Because the daemon is already running with the code in
memory, it’s able to serve the response very quickly.

Note

If you're on a shared hosting system, you’ll probably be forced to use Web server-managed
FastCGI processes. If you're in this situation, you should read the section titled “Running Django
on a Shared-Hosting Provider with Apache,” below.

A Web server can connect to a FastCGI server in one of two ways: it can use either a Unix domain socket (a
named pipe on Win32 systems) or a TCP socket. What you choose is a manner of preference; a TCP socket is
usually easier due to permissions issues.

To start your server, first change into the directory of your project (wherever your manage. py is), and then run
nmanage. py with the runf cgi command:

./ manage. py runfcgi [options]

If you specify hel p as the only option after runf cgi , a list of all the available options will display.

You’'ll need to specify either a socket or both host and port. Then, when you set up your Web server, you'll
just need to point it at the socket or host/port you specified when starting the FastCGI server.

A few examples should help explain this:

= Running a threaded server on a TCP port:

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

http://www.djangoproject.com/r/flup/

Chapter 20: Deploying Django
./ manage. py runfcgi nethod=threaded host=127.0.0.1 port=3033
= Running a preforked server on a Unix domain socket:
./ manage. py runfcgi nethod=prefork socket=/hone/user/nysite.sock pidfile=django.pid
= Run without daemonizing (backgrounding) the process (good for debugging):

./ manage. py runfcgi daenoni ze=fal se socket=/tnp/nysite.sock

Stopping the FastCGl Daemon

If you have the process running in the foreground, it’s easy enough to stop it: simply press Ctrl+C to stop and
quit the FastCGI server. However, when you're dealing with background processes, you'll need to resort to the
Unix ki | | command.

If you specify the pi dfi | e option to your manage. py runfcgi , you can kill the running FastCGI daemon like
this:

kill “cat $PIDFILE

where $PI DFI LE is the pi df i | e you specified.

To easily restart your FastCGl daemon on Unix, you can use this small shell script:

#!/ bi n/ bash

Repl ace these three settings.
PRQIDI R="/ hone/ user/ mypr oj ect"
Pl DFI LE=" $PROIDI R/ nysi te. pi d"
SOCKET="$PRQJDI R/ nysi t e. sock"

cd $PRQIDI R

if [-f $PIDFILE]; then
kill “cat -- $PIDFILE
rm-f -- $PIDFILE

fi

exec /usr/bin/env - \
PYTHONPATH=". . / pyt hon: .. " \
./ manage. py runfcgi socket=$SOCKET pi dfi |l e=$PI DFI LE

Using Django with Apache and FastCGI

To use Django with Apache and FastCGlI, you’ll need Apache installed and configured, with mod_fastcgi
installed and enabled. Consult the Apache and mod_fastcgi documentation for instructions:
http://www.djangoproject.com/r/mod_fastcgi/.

Once you’ve completed the setup, point Apache at your Django FastCGl instance by editing the ht t pd. conf
(Apache configuration) file. You’ll need to do two things:

= Use the Fast C4 Ext er nal Server directive to specify the location of your FastCGI server.

= Use nod_rewite to point URLs at FastCGI as appropriate.

Specifying the Location of the FastCGI Server

The Fast Cd Ext er nal Server directive tells Apache how to find your FastCGI server. As the

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

http://www.djangoproject.com/r/mod_fastcgi/

Chapter 20: Deploying Django

FastCGIlExternalServer docs (http://www.djangoproject.com/r/mod_fastcgi/FastCGlExternalServer/) explain,
you can specify either a socket or a host. Here are examples of both:

Connect to FastCd via a socket/naned pipe:
Fast CA Ext er nal Server /home/user/public_htm/nysite.fcgi -socket /hone/user/nysite.sock

Connect to FastCd via a TCP host/port:
Fast CA Ext er nal Server /home/user/public_htm/nysite.fcgi -host 127.0.0.1: 3033

In either case, the the directory /home/user/public_html/ should exist, though the file
/' hone/ user/public_htm /mysite.fcgi doesn’'t actually have to exist. It’s just a URL used by the Web server

internally — a hook for signifying which requests at a URL should be handled by FastCGI. (More on this in the
next section.)

Using mod_rewrite to Point URLs at FastCGlI

The second step is telling Apache to use FastCGI for URLs that match a certain pattern. To do this, use the
mod_rewrite module and rewrite URLs to nysite. fcgi (or whatever you specified in the
Fast CA Ext er nal Server directive, as explained in the previous section).

In this example, we tell Apache to use FastCGI to handle any request that doesn’t represent a file on the
filesystem and doesn’t start with / nedi a/ . This is probably the most common case, if you're using Django’s
admin site:

<Virtual Host 12.34.56. 78>
Server Nanme exanpl e. com
Docunent Root / hone/ user/public_htmn
Alias /media /hone/user/python/django/ contrib/adm n/ nedi a
Rewri t eEngi ne On
RewiteRule A/ (nmedia.*)$ /$1 [QSA L]
Rewr it eCond % REQUEST_FI LENAMVE} ! -f
RewriteRule N (.*)$ /nysite.fcgi/$1 [QSA L]
</ Vi rtual Host >

FastCGIl and lighttpd

lighttpd (http://www.djangoproject.com/r/lighttpd/) is a lightweight Web server commonly used for serving
static files. It supports FastCGI natively and thus is also an ideal choice for serving both static and dynamic
pages, if your site doesn’t have any Apache-specific needs.

Make sure nod_fastcgi is in your modules list, somewhere after nod_rew i te and nod_access, but not after
nod_accessl og. You'll probably want nod_al i as as well, for serving admin media.

Add the following to your lighttpd config file:

server. docunent -root = "/home/user/public_htm"
fastcgi.server = (
"Inysite.fcgi" => (
"main" => (

Use host / port instead of socket for TCP fastcgi
"host" => "127.0.0.1",
"port" => 3033,
"socket" => "/home/user/mnmysite.sock",
"check-1ocal" => "disabl e",

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

http://www.djangoproject.com/r/mod_fastcgi/FastCGIExternalServer/
http://www.djangoproject.com/r/lighttpd/

Chapter 20: Deploying Django

alias.url = (
"/ media/" => "/honme/user/django/ contri b/ adm n/ nedial",

url.rewite-once = (
"A(/media. *)$" => "$1",
"nlfavicon\.ico$" => "/nedialfavicon.ico",
"ACL.*)$" => "/nysite.fcgi $1",

Running Multiple Django Sites on One lighttpd Instance

lighttpd lets you use “conditional configuration” to allow configuration to be customized per host. To specify
multiple FastCGl sites, just add a conditional block around your FastCGI config for each site:

|If the hostnanme is 'ww. exanpl el. com...

$HTTP["host"] == "ww. exanpl el. com' {
server. docunent -root = "/foo/sitel"
fastcgi.server = (

)
}
| f the hostnane is 'ww.exanpl e2.com...
$HTTP["host"] == "ww. exanpl e2. com' {
server.docunent -root = "/fool/site2"

fastcgi.server = (

You can also run multiple Django installations on the same site simply by specifying multiple entries in the
fastcgi.server directive. Add one FastCGI host for each.

Running Django on a Shared-Hosting Provider with Apache

Many shared-hosting providers don’t allow you to run your own server daemons or edit the htt pd. conf file. In
these cases, it’s still possible to run Django using Web server-spawned processes.

= If you’re using Web server-spawned processes, as explained in this section, there’s no need for

you to start the FastCGI server on your own. Apache will spawn a number of processes, scaling as
it needs to.

In your Web root directory, add this to a file named . ht access

AddHandl er fastcgi-script .fcgi

Rewri t eEngi ne On

Rewri t eCond % REQUEST_FI LENAVE} ! -f
RewriteRule ~(.*)$ nysite.fcgi/$1 [QSA L]

Then, create a small script that tells Apache how to spawn your FastCGIl program. Create a file, mysite.fcgi,
and place it in your Web directory, and be sure to make it executable

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

Chapter 20: Deploying Django

#!/ usr/ bi n/ pyt hon
i mport sys, os

Add a custom Python path.
sys. path.insert (0, "/home/user/python")

Switch to the directory of your project. (Optional.)
os.chdir("/home/ user/ myproject")

Set the DJANGO SETTI NGS MODULE environment vari able.
0s. envi ron[' DJANGO_SETTI NGS_MODULE'] “myproj ect.settings"

from dj ango. core. servers. fastcgi inmport runfastcgi
runfast cgi (net hod="t hreaded", daenoni ze="fal se")

Restarting the Spawned Server

If you change any Python code on your site, you’ll need to tell FastCGI the code has changed. But there’s no
need to restart Apache in this case. Rather, just reupload nysite. fcgi — or edit the file — so that the
timestamp on the file changes. When Apache sees the file has been updated, it will restart your Django
application for you.

If you have access to a command shell on a Unix system, you can accomplish this easily by using the t ouch
command:

touch nysite.fcgi

Scaling

Now that you know how to get Django running on a single server, let's look at how you can scale out a Django
installation. This section walks through how a site might scale from a single server to a large-scale cluster that
could serve millions of hits an hour.

It's important to note, however, that nearly every large site is large in different ways, so scaling is anything
but a one-size-fits-all operation. The following coverage should suffice to show the general principle, and
whenever possible we’ll try to point out where different choices could be made.

First off, we’ll make a pretty big assumption and exclusively talk about scaling under Apache and mod_python.
Though we know of a number of successful medium- to large-scale FastCGI deployments, we’re much more
familiar with Apache.

Running on a Single Server

Most sites start out running on a single server, with an architecture that looks something like Figure 20-1.

django

database

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

Chapter 20: Deploying Django
Figure 20-1: a single server Django setup.

This works just fine for small- to medium-sized sites, and it’s relatively cheap — you can put together a single-
server site designed for Django for well under $3,000.

However, as traffic increases you’ll quickly run into resource contention between the different pieces of
software. Database servers and Web servers love to have the entire server to themselves, so when run on the
same server they often end up “fighting” over the same resources (RAM, CPU) that they’'d prefer to
monopolize.

This is solved easily by moving the database server to a second machine, as explained in the following section.

Separating Out the Database Server

As far as Django is concerned, the process of separating out the database server is extremely easy: you'll
simply need to change the DATABASE_HOST setting to the IP or DNS name of your database server. It's

probably a good idea to use the IP if at all possible, as relying on DNS for the connection between your Web
server and database server isn't recommended.

With a separate database server, our architecture now looks like Figure 20-2.

database sanver

Figure 20-2: Moving the database onto a dedicated server.

Here we’re starting to move into what’s usually called n-tier architecture. Don’t be scared by the buzzword — it
just refers to the fact that different “tiers” of the Web stack get separated out onto different physical machines.

At this point, if you anticipate ever needing to grow beyond a single database server, it's probably a good idea
to start thinking about connection pooling and/or database replication. Unfortunately, there’s not nearly
enough space to do those topics justice in this book, so you’ll need to consult your database’s documentation
and/or community for more information.

Running a Separate Media Server

We still have a big problem left over from the single-server setup: the serving of media from the same box
that handles dynamic content.

Those two activities perform best under different circumstances, and by smashing them together on the same
box you end up with neither performing particularly well. So the next step is to separate out the media — that
is, anything not generated by a Django view — onto a dedicated server (see Figure 20-3).

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

Chapter 20: Deploying Django

= e

web senver media server

database sarver

Figure 20-3: Separating out the media server.

Ideally, this media server should run a stripped-down Web server optimized for static media delivery. lighttpd
and tux (http://www.djangoproject.com/r/tux/) are both excellent choices here, but a heavily stripped down
Apache could work, too.

For sites heavy in static content (photos, videos, etc.), moving to a separate media server is doubly important
and should likely be the first step in scaling up.

This step can be slightly tricky, however. Django’s admin needs to be able to write uploaded media to the
media server (the MEDI A_ROOT setting controls where this media is written). If media lives on another server,
however, you’ll need to arrange a way for that write to happen across the network.

The easiest way to do this is to use NFS to mount the media server’s media directories onto the Web server(s).
If you mount them in the same location pointed to by MEDI A_ROOT, media uploading will Just Work™.

Implementing Load Balancing and Redundancy

At this point, we’'ve broken things down as much as possible. This three-server setup should handle a very
large amount of traffic — we served around 10 million hits a day from an architecture of this sort — so if you
grow further, you’ll need to start adding redundancy.

This is a good thing, actually. One glance at Figure 20-3 shows you that if even a single one of your three
servers fails, you’ll bring down your entire site. So as you add redundant servers, not only do you increase
capacity, but you also increase reliability.

For the sake of this example, let’s assume that the Web server hits capacity first. It's easy to get multiple
copies of a Django site running on different hardware — just copy all the code onto multiple machines, and
start Apache on both of them.

However, you’ll need another piece of software to distribute traffic over your multiple servers: a load balancer.
You can buy expensive and proprietary hardware load balancers, but there are a few high-quality open source
software load balancers out there.

Apache’s nod_pr oxy is one option, but we've found Perlbal (http://www.djangoproject.com/r/perlbal/) to be
simply fantastic. It's a load balancer and reverse proxy written by the same folks who wrote nentached (see
Chapter 13).

Note

If you're using FastCGlI, you can accomplish this same distribution/load balancing step by
separating your front-end Web servers and back-end FastCGI processes onto different machines.
The front-end server essentially becomes the load balancer, and the back-end FastCGI processes
replace the Apache/mod_python/Django servers.

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

http://www.djangoproject.com/r/tux/
http://www.djangoproject.com/r/perlbal/

Chapter 20: Deploying Django

With the Web servers now clustered, our evolving architecture starts to look more complex, as shown in Figure
20-4.

perlbal media

load balancer media sarver

¥

django

web server cluster

L)

database server

Figure 20-4: A load-balanced, redundant server setup.

Notice that in the diagram the Web servers are referred to as a “cluster” to indicate that the number of servers

is basically variable. Once you have a load balancer out front, you can easily add and remove back-end Web
servers without a second of downtime.

Going Big
At this point, the next few steps are pretty much derivatives of the last one:

= As you need more database performance, you'll need to add replicated database servers. MySQL includes
built-in replication; PostgreSQL users should look into Slony (http://www.djangoproject.com/r/slony/) and
pgpool (http://www.djangoproject.com/r/pgpool/) for replication and connection pooling, respectively.

= If the single load balancer isn’'t enough, you can add more load balancer machines out front and
distribute among them using round-robin DNS.

= If a single media server doesn’t suffice, you can add more media servers and distribute the load with your
load-balancing cluster.

= If you need more cache storage, you can add dedicated cache servers.

= At any stage, if a cluster isn’t performing well, you can add more servers to the cluster.

After a few of these iterations, a large-scale architecture might look like Figure 20-5.

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

http://www.djangoproject.com/r/slony/
http://www.djangoproject.com/r/pgpool/

Chapter 20: Deploying Django

perlbal perlbal perlbal media media

load balancing cluster media server cluster

_ -

web server cluster cache cluster

|
v v v

database server cluster

Figure 20-5. An example large-scale Django setup.

Though we’ve shown only two or three servers at each level, there’s no fundamental limit to how many you
can add.

Once you get up to this level, you’ve got quite a few options. Appendix A has some information from a few
developers responsible for some large-scale Django installations. If you're planning a high-traffic Django site,
it's worth a read.

Performance Tuning

If you have huge amount of money, you can just keep throwing hardware at scaling problems. For the rest of
us, though, performance tuning is a must.

Note

Incidentally, if anyone with monstrous gobs of cash is actually reading this book, please consider a
substantial donation to the Django project. We accept uncut diamonds and gold ingots, too.

Unfortunately, performance tuning is much more of an art than a science, and it is even more difficult to write
about than scaling. If you're serious about deploying a large-scale Django application, you should spend a
great deal of time learning how to tune each piece of your stack.

The following sections, though, present a few Django-specific tuning tips we’ve discovered over the years.

There’s No Such Thing As Too Much RAM

As of this writing, the really expensive RAM costs only about $200 per gigabyte — pennies compared to the
time spent tuning elsewhere. Buy as much RAM as you can possibly afford, and then buy a little bit more.

Faster processors won’t improve performance all that much; most Web servers spend up to 90% of their time
waiting on disk 1/0. As soon as you start swapping, performance will just die. Faster disks might help slightly,
but they’re much more expensive than RAM, such that it doesn’t really matter.

If you have multiple servers, the first place to put your RAM is in the database server. If you can afford it, get
enough RAM to get fit your entire database into memory. This shouldn’t be too hard. LJWorld.com’s database
— including over half a million newspaper articles dating back to 1989 — is under 2GB.

Next, max out the RAM on your Web server. The ideal situation is one where neither server swaps — ever. If

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

Chapter 20: Deploying Django

you get to that point, you should be able to withstand most normal traffic.

Turn Off Keep-Alive

Keep- Al i ve is a feature of HTTP that allows multiple HTTP requests to be served over a single TCP connection,
avoiding the TCP setup/teardown overhead.

This looks good at first glance, but it can kill the performance of a Django site. If you're properly serving media
from a separate server, each user browsing your site will only request a page from your Django server every
ten seconds or so. This leaves HTTP servers waiting around for the next keep-alive request, and an idle HTTP
server just consumes RAM that an active one should be using.

Use memcached

Although Django supports a number of different cache back-ends, none of them even come close to being as
fast as memcached. If you have a high-traffic site, don’t even bother with the other back-ends — go straight
to memcached.

Use memcached Often

Of course, selecting memcached does you no good if you don’t actually use it. Chapter 13 is your best friend
here: learn how to use Django’s cache framework, and use it everywhere possible. Aggressive, preemptive
caching is usually the only thing that will keep a site up under major traffic.

Join the Conversation

Each piece of the Django stack — from Linux to Apache to PostgreSQL or MySQL — has an awesome
community behind it. If you really want to get that last 1% out of your servers, join the open source
communities behind your software and ask for help. Most free-software community members will be happy to
help.

And also be sure to join the Django community. Your humble authors are only two members of an incredibly
active, growing group of Django developers. Our community has a huge amount of collective experience to
offer.

What’s Next?

You’ve reached the end of our regularly scheduled program. The following appendixes all contain reference
material that you might need as you work on your Django projects.

We wish you the best of luck in running your Django site, whether it’s a little toy for you and a few friends, or
the next Google.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/chapter20/[2009.01.07. 10:42:02]

http://www.djangobook.com/license/
http://mediatemple.net/

Appendix A: Case Studies

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Appendix A: Case Studies

To help answer questions about how Django works in the “real world,” we spoke with (well, emailed) a handful
of people who have complete, deployed Django sites under their belts. Most of this appendix is in their words,
which have been lightly edited for clarity.

Cast of Characters

Let’s meet our cast and their projects.

= Ned Batchelder is the lead engineer at Tabblo.com. Tabblo started life as a storytelling tool built around
photo sharing, but it was recently bought by Hewlett-Packard for more wide-reaching purposes:

HP saw real value in our style of web development, and in the way we bridged the
virtual and physical worlds. They acquired us so that we could bring that technology to
other sites on the Web. Tabblo.com is still a great storytelling site, but now we are also
working to componentize and rehost the most interesting pieces of our technology.

= Johannes Beigel is a lead developer at Brainbot Technologies AG. Brainbot’s major public-facing Django
site is http://pediapress.com/, where you can order printed versions of Wikipedia articles. Johannes’s
team is currently working on an enterprise-class knowledge-management program known as Brainfiler.

Johannes tells us that Brainfiler

[...] is a software solution to manage, search for, categorize, and share information from
distributed information sources. It’s built for enterprise usage for both the intranet and
the Internet and is highly scalable and customizable. The development of the core
concepts and components started in 2001. Just recently we have
redesigned/reimplemented the application server and Web front-end, which is [now]
based on Django.

= David Cramer is the lead developer at Curse, Inc. He develops Curse.com, a gaming site devoted to
massively multiplayer online games like World of Warcraft, Ultima Online, and others.

Curse.com is one of the largest deployed Django sites on the Internet:

We do roughly 60-90 million page views in an average month, and we have peaked at
over 130 million page views [in a month] using Django. We are a very dynamic and user-
centric Web site for online gamers, specifically massively multiplayer games, and are one
of the largest Web sites globally for World of Warcraft. Our Web site was established in
early 2005, and since late 2006 we have been expanding our reach into games beyond
World of Warcraft.

= Christian Hammond is a senior engineer at VMware (a leading developer of virtualization software). He’s
also the lead developer of Review Board (http://www.review-board.org/), a Web-based code review
system. Review Board began life as an internal VMware project, but is now open source:

In late 2006, David Trowbridge and | were discussing the process we used at VMware for
handling code reviews. Before people committed code to the source repository, they
were supposed to send out a diff of the change to a mailing list and get it reviewed. It
was all handled over email, and as such, it became hard to keep track of reviews

http://www.djangobook.com/en/1.0/appendixA/[2009.01.07. 10:42:12]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257
http://pediapress.com/
http://www.review-board.org/

Appendix A: Case Studies

requiring your attention. We began to discuss potential solutions for this problem.

Rather than writing down my ideas, | put them into code. Before long, Review Board was
born. Review Board helps developers, contributors, and reviewers to keep track of the
code that’s out for review and to better communicate with each other. Rather than
vaguely referencing some part of the code in an email, the reviewer is able to comment
directly on the code. The code, along with the comments, will then appear in the
review, giving the developer enough context to work with to quickly make the necessary
changes.

Review Board grew quickly at VMware. Much faster than expected, actually. Within a few
short weeks, we had ten teams using Review Board. However, this project is not internal
to VMware. It was decided day one that this should be open source and be made
available for any company or project to use.

We made an open source announcement and put a site together, which is available at
http://www.review-board.org/. The response to our public announcement was as
impressive as our internal VMware announcement. Before long, our demo server reached
over 600 users, and people began to contribute back to the project.

Review Board isn’t the only code review tool on the market, but it is the first we have
seen that is open source and has the extensive feature set we’ve worked to build into it.
We hope this will in time benefit many open source and commercial projects.

Why Django?

We asked each developer why he decided to use Django, what other options were considered, and how the
decision to use Django was ultimately made.

Ned Batchelder:

Before | joined Tabblo, Antonio Rodriguez (Tabblo’s founder/CTO) did an evaluation of Rails
and Django, and found that both provided a great quick-out-of-the-blocks rapid development
environment. In comparing the two, he found that Django had a greater technical depth that
would make it easier to build a robust, scalable site. Also, Django’s Python foundation meant
that we’d have all the richness of the Python ecosystem to support our work. This has
definitely been proven out as we’ve built Tabblo.

Johannes Beigel:

As we have been coding in Python for many years now, and quickly started using the Twisted
framework, Nevow was the most “natural” solution for our Web application stuff. But we
soon realized that — despite the perfect Twisted integration — many things were getting a
little cumbersome and got in the way of our agile development process.

After some Internet research it quickly became clear that Django was the most promising
Web development framework for our requirements.

The trigger that led us to Django was its template syntax, but we soon appreciated all the
other features that are included, and so Django was pretty much a fast-selling item.

After doing a few years of parallel development and deployment (Nevow is still in use for
some projects on customer sites), we came to the conclusion that Django is a lot less
cumbersome, results in code that is much better to maintain, and is more fun to work with.

David Cramer:

| heard about Django in the summer of 2006, about the time we were getting ready to do an

http://www.djangobook.com/en/1.0/appendixA/[2009.01.07. 10:42:12]

http://www.review-board.org/

Appendix A: Case Studies

overhaul of Curse, and we did some research on it. We were all very impressed at what it
could do, and where it could save time for us. We talked it over, decided on Django, and
began writing the third revision to the Web site almost immediately.

Christian Hammond:

| had toyed around with Django on a couple of small projects and had been very impressed
with it. It’s based on Python, which | had become a big fan of, and it made it easy not only
to develop Web sites and Web apps, but also to keep them organized and maintainable. This
was always tricky in PHP and Perl. Based on past experiences, going with Django was a no-
brainer.

Getting Started

Since Django’s a relatively new tool, there aren’t that many experienced Django developers out there. We
asked our “panel” how they got their team up to speed on Django and for any tips they wanted to share with
new Django developers.

Johannes Beigel:

After coding mostly in C++ and Perl, we switched to Python and continued using C++ for the
computationally intensive code.

[We learned Django by] working through the tutorial, browsing the documentation to get an
idea of what’s possible (it’s easy to miss many features by just doing the tutorial), and trying
to understand the basic concepts behind middleware, request objects, database models,
template tags, custom filters, forms, authorization, localization... Then [we could] take a
deeper look at those topics when [we] actually needed them.

David Cramer:

The Web site documentation is great. Stick with it.

Christian Hammond:

David and | both had prior experience with Django, though it was limited. We had learned a
lot through our development of Review Board. | would advise new users to read through the
well-written Django documentation and [the book you’re reading now], both of which have

been invaluable to us.

We didn’t have to bribe Christian to get that quote — promise!

Porting Existing Code

Although Review Board and Tabblo were ground-up development, the other sites were ported from existing
code. We were interested in hearing how that process went.

Johannes Beigel:

We started to “port” the site from Nevow, but we soon realized that we’d like to change so
many conceptual things (both in the Ul part and in the application server part) that we
started from scratch and used the former code merely as a reference.

David Cramer:

The previous site was written in PHP. Going from PHP to Python was great programmatically.
The only downfall is you have to be a lot more careful with memory management [since
Django processes stay around a lot longer than PHP processes (which are single cycle)].

http://www.djangobook.com/en/1.0/appendixA/[2009.01.07. 10:42:12]

Appendix A: Case Studies

How Did It Go?

Now for the million-dollar question: How did Django treat you? We were especially interested in hearing where
Django fell down — it's important to know where your tools are weak before you run into roadblocks.

Ned Batchelder:

Django has really enabled us to experiment with our Web site’s functionality. Both as a
startup heat-seeking customers and businesses, and now as a part of HP working with a
number of partners, we’ve had to be very nimble when it comes to adapting the software to
new demands. The separation of functionality into models, views, and controllers has given
us modularity so we can appropriately choose where to extend and modify. The underlying
Python environment gives us the opportunity to make use of existing libraries to solve
problems without reinventing the wheel. PIL, PDFlib, ZSI, JSmin, and BeautifulSoup are just a
handful of the libraries we’ve pulled in to do some heavy lifting for us.

The most difficult part of our Django use has been the relationship of memory objects to
database objects, in a few ways. First, Django’s ORM does not ensure that two references to
the same database record are the same Python object, so you can get into situations where
two parts of the code are both trying to modify the same record, and one of the copies is
stale. Second, the Django development model encourages you to base your data objects on
database objects. We’ve found over time more and more uses for data objects that are not
tied to the database, and we’ve had to migrate away from assuming that data is stored in
the database.

For a large, long-lived code base, it definitely makes sense to spend time up front
anticipating the ways your data will be stored and accessed, and building some infrastructure
to support those ways.

We’ve also added our own database migration facility so that developers don’t have to apply
SQL patches to keep their database schemas current. Developers who change the schema
write a Python function to update the database, and these are applied automatically when
the server is started.

Johannes Beigel:

We consider Django as a very successful platform that perfectly fits in the Pythonic way of
thinking. Almost everything just worked as intended.

One thing that needed a bit of work in our current project was tweaking the global
settings. py file and directory structure/configuration (for apps, templates, locale data,
etc.), because we implemented a highly modular and configurable system, where all Django
views are actually methods of some class instances. But with the omnipotence of dynamic
Python code, that was still possible.

David Cramer:

We managed to push out large database applications in a weekend. This would have taken
one to two weeks to do on the previous Web site, in PHP. Django has shined exactly where
we wanted it to.

Now, while Django is a great platform, it can’t go without saying that it’s not built specific to
everyone’s needs. Upon the initial launch of the Django Web site, we had our highest traffic
month of the year, and we weren’t able to keep up. Over the next few months we tweaked
bits and pieces, mostly hardware and the software serving Django requests. [This included
modification of our] hardware configuration, optimization of Django, [and tuning] the
software we were using to serve the requests (which, at the time, was lighttpd and FastCGl).

In May of 2007, Blizzard (the creators of World of Warcraft) released another quite large

http://www.djangobook.com/en/1.0/appendixA/[2009.01.07. 10:42:12]

Appendix A: Case Studies

patch, as they had done in December when we first launched Django. The first thing going
through our heads was, “Hey, we nearly held up in December, this is nowhere near as big, we
should be fine.” We lasted about 12 hours before the servers started to feel the heat. The
guestion was raised again: was Django really the best solution for what we want to
accomplish?

Thanks to a lot of great support from the community, and a late night, we managed to
implement several “hot-fixes” to the Web site during those few days. The changes (which
hopefully have been rolled back into Django by the time this book is released) managed to
completely reassure everyone that while not everyone needs to be able to do 300 Web
requests per second, the people who do, can, with Django.

Christian Hammond:

Django allowed us to build Review Board fairly quickly by forcing us to stay organized through
its URL, view, and template separations, and by providing useful built-in components, such as
the authentication app, built-in caching, and the database abstraction. Most of this has
worked really well for us.

Being a dynamic [Web application], we’ve had to write a lot of JavaScript code. This is an
area that Django hasn’t really helped us with so far. Django’s templates, template tags,
filters, and forms support are great, but aren’t easily usable from JavaScript code. There are
times when we would want to use a particular template or filter but had no way of using it
from JavaScript. | would personally like to see some creative solutions for this incorporated
into Django.

Team Structure

Often successful projects are made so by their teams, not their choice of technology. We asked our panel how
their teams work, and what tools and techniques they use to stay on track.

Ned Batchelder:

We’re a pretty standard Web startup environment: Trac/SVN, five developers. We have a
staging server, a production server, an ad hoc deploy script, and so on.

Memcached rocks.
Johannes Beigel:

We use Trac as our bug tracker and wiki and have recently switched from using
Subversion+SVK to Mercurial (a Python-written distributed version- control system that
handles branching/merging like a charm).

| think we have a very agile development process, but we do not follow a “rigid”
methodology like Extreme Programming ([though] we borrow many ideas from it). We are
more like Pragmatic Programmers.

We have an automated build system (customized but based on SCons) and unit tests for
almost everything.

David Cramer:

Our team consists of four Web developers, all working in the same office space, so it’s quite
easy to communicate. We rely on common tools such as SVN and Trac.

Christian Hammond:

Review Board currently has two main developers (myself and David Trowbridge) and a couple

http://www.djangobook.com/en/1.0/appendixA/[2009.01.07. 10:42:12]

Appendix A: Case Studies

of contributors. We’re hosted on Google Code and make use of their Subversion repository,
issue tracker, and wiki. We actually use Review Board to review our changes before they go
in. We test on our local computers, both by hand and through unit tests. Our users at VMware
who use Review Board every day provide a lot of useful feedback and bug reports, which we
try to incorporate into the program.

Deployment

The Django developers take ease of deployment and scaling very seriously, so we’re always interested in
hearing about real-world trials and tribulations.

Ned Batchelder:

We’ve used caching both at the query and response layers to speed response time. We have a
classic configuration: a multiplexer, many app servers, one database server. This has worked
well for us, because we can use caching at the app server to avoid database access, and then
add app servers as needed to handle the volume.

Johannes Beigel:

Linux servers, preferably Debian, with many gigs of RAM. Lighttpd as the Web server, Pound
as the HTTPS front-end and load balancer if needed, and Memcached for caching. SQLite for
small databases, Postgres if data grows larger, and highly specialized custom database stuff
for our search and knowledge management components.

David Cramer:
Our structure is still up for debate... [but this is what’s current]:

When a user requests the site they are sent to a cluster of Squid servers using lighttpd.
There, servers then check if the user is logged in. If not, they’re served a cached page. A
logged-in user is forwarded to a cluster of Web servers running apache2 plus mod_python
(each with a large amount of memory), which then each rely on a distributed Memcached
system and a beastly MySQL database server. Static content is hosted on a cluster of lighttpd
servers. Media, such as large files and videos, are hosted (currently) on a server using a
minimal Django install using lighttpd plus fastcgi. As of right now we’re moving toward
pushing all media to a service similar to Amazon’s S3.

Christian Hammond:

There are two main production servers right now. One is at VMware and consists of an Ubuntu
virtual machine running on VMware ESX. We use MySQL for the database, Memcached for our
caching back-end, and currently Apache for the Web server. We have several powerful servers
that we can scale across when we need to. We may find ourselves moving MySQL or
Memcached to another virtual machine as our user base increases.

The second production server is the one for Review Board itself. The setup is nearly identical
to the one at VMware, except the virtual machine is being hosted on VMware Server.

« previous ¢ table of contents

GNU Free Document License

http://www.djangobook.com/en/1.0/appendixA/[2009.01.07. 10:42:12]

next »

http://www.djangobook.com/license/
http://mediatemple.net/

Appendix B: Model Definition Reference

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Appendix B: Model Definition Reference

Chapter 5 explains the basics of defining models, and we use them throughout the rest of the book. There is,
however, a huge range of model options available not covered elsewhere. This appendix explains each possible
model definition option.

Note that although these APIs are considered very stable, the Django developers consistently add new
shortcuts and conveniences to the model definition. It's a good idea to always check the latest documentation
online at http://www.djangoproject.com/documentation/0.96/model-api/.

Fields

The most important part of a model — and the only required part of a model — is the list of database fields it
defines.

Field Name Restrictions

Django places only two restrictions on model field names:

1. A field name cannot be a Python reserved word, because that would result in a Python
syntax error, for example:

cl ass Exanpl e(nodel s. Mbdel) :
pass = nodels.IntegerField() # 'pass' is a reserved word!

2. A field name cannot contain more than one underscore in a row, due to the way Django’s
query lookup syntax works, for example:

cl ass Exanpl e(nodel s. Mbdel) :
foo__bar = nodels.IntegerField() # 'foo__bar' has two underscores!

These limitations can be worked around, though, because your field name doesn’t necessarily
have to match your database column name. See “db_column”, below. below.

SQL reserved words, such as j oi n, wher e, or sel ect, are allowed as model field names, because
Django escapes all database table names and column names in every underlying SQL query. It
uses the quoting syntax of your particular database engine.

Each field in your model should be an instance of the appropriate Fi el d class. Django uses the field class types
to determine a few things:

= The database column type (e.g., | NTEGER, VARCHAR).

= The widget to use in Django’s admin interface, if you care to use it (e.g., <i nput type="text">,
<sel ect >).

= The minimal validation requirements, which are used in Django’s admin interface.

A complete list of field classes follows, sorted alphabetically. Note that relationship fields (For ei gnKey, etc.)
are handled in the next section.

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257
http://www.djangoproject.com/documentation/0.96/model-api/

Appendix B: Model Definition Reference

AutoField

An | nt eger Fi el d that automatically increments according to available IDs. You usually won’t need to use this
directly; a primary key field will automatically be added to your model if you don’t specify otherwise.

BooleanField

A true/false field.

CharField

A string field, for small- to large-sized strings. For large amounts of text, use Text Fi el d.

Char Fi el d has an extra required argument, mex| engt h, which is the maximum length (in characters) of the
field. This maximum length is enforced at the database level and in Django’s validation.

CommaSeparatedintegerField

A field of integers separated by commas. As in Char Fi el d, the max| engt h argument is required.

DateField

A date field. Dat eFi el d has a few extra optional arguments, as shown in Table B-1.

Table B-1. Extra DateField Options

Argument Description

aut o_now Automatically sets the field to now every time the object is saved. It's useful
for “last-modified” timestamps. Note that the current date is always used;
it’s not just a default value that you can override.

aut o_now_add Automatically sets the field to now when the object is first created. It's
useful for creation of timestamps. Note that the current date is always used;
it’s not just a default value that you can override.

DateTimeField

A date and time field. It takes the same extra options as Dat eFi el d.

EmailField

A Char Fi el d that checks that the value is a valid email address. This doesn’t accept max| engt h; its max| engt h
is automatically set to 75.

FileField

A file-upload field. It has one required argument, as shown in Table B-3.
Table B-2. Extra FileField Option

Argument Description

upl oad_to A local filesystem path that will be appended to your MEDI A ROOT setting to
determine the output of the get _<fi el dname>_url () helper function

This path may contain st rfti ne formatting (see http://www.djangoproject.com/r/python/strftime/), which will
be replaced by the date/time of the file upload (so that uploaded files don’t fill up the given directory).

Using a Fi | eFi el d or an | mageFi el d in a model takes a few steps:

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

http://www.djangoproject.com/r/python/strftime/

Appendix B: Model Definition Reference

1. In your settings file, you’ll need to define MEDI A_ROOT as the full path to a directory where you’d like
Django to store uploaded files. (For performance, these files are not stored in the database.) Define
VEDI A_URL as the base public URL of that directory. Make sure that this directory is writable by the Web
server’s user account.

2. Add the Fi | eFi el d or | mageFi el d to your model, making sure to define the upl oad_t o option to tell
Django to which subdirectory of MEDI A_ROOT it should upload files.

3. All that will be stored in your database is a path to the file (relative to MEDI A_ROOT). You’'ll most likely
want to use the convenience get _<fi el dnane>_ur| function provided by Django. For example, if your
I mageFi el d is called nug_shot , you can get the absolute URL to your image in a template with
{{ object.get_nug_shot _url }}.

For example, say your MEDI A_ROOT is set to ' / honme/ medi a' , and upl oad_t o is set to ' phot os/ %/ % %' . The
" or/ % %' part of upl oad_t o is strftime formatting; ' %" is the four-digit year, ' %1 is the two-digit month,
and ' %d' is the two-digit day. If you upload a file on January 15, 2007, it will be saved in the directory

/ hone/ medi a/ phot os/ 2007/ 01/ 15.

If you want to retrieve the upload file’s on-disk file name, or a URL that refers to that file, or the file’s size,
you can use the get _FI ELD fil enane(), get_FIELD url (), and get _FI ELD _si ze() methods. See Appendix C
for a complete explanation of these methods.

Note

Whenever you deal with uploaded files, you should pay close attention to where you’re uploading
them and what type of files they are, to avoid security holes. Validate all uploaded files so that
you’re sure the files are what you think they are.

For example, if you blindly let somebody upload files, without validation, to a directory that’s
within your Web server’s document root, then somebody could upload a CGI or PHP script and
execute that script by visiting its URL on your site. Don’t let that happen!

FilePathField

A field whose choices are limited to the file names in a certain directory on the filesystem. It has three special
arguments, as shown in Table B-4.

Table B-3. Extra FilePathField Options

Argument Description

pat h Required; the absolute filesystem path to a directory from which this
Fi | ePat hFi el d should get its choices (e.g., "/ hone/ i nages").

mat ch Optional; a regular expression, as a string, that Fi | ePat hFi el d will use to
filter file names. Note that the regex will be applied to the base file name, not
the full path (e.g., "foo. *\.txt"", which will match a file called f 0023. t xt ,
but not bar . t xt or f0023. gi f).

recursive Optional; either True or Fal se. The default is Fal se. It specifies whether all
subdirectories of pat h should be included.

Of course, these arguments can be used together.

The one potential gotcha is that mat ch applies to the base file name, not the full path. So, this example:
Fi | ePat hFi el d(pat h="/ hone/ i mages", match="foo.*", recursive=True)

will match / hone/ i mages/ f oo. gi f but not / hone/ i nages/ f oo/ bar. gi f because the nat ch applies to the base
file name (f oo. gi f and bar. gi f).

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

FloatField
A floating-pint number, represented in Python by a fl oat instance. It has two required arguments, as shown
in Table B-2.
Table B-4. Extra FloatField Options
Argument Description
max_digits The maximum number of digits allowed in the number
deci mal _pl aces The number of decimal places to store with the number

For example, to store numbers up to 999 with a resolution of two decimal places, you'd use the following:
nodel s. Fl oat Fi el d(..., max_digits=5, decinmal_pl aces=2)
And to store numbers up to approximately 1 billion with a resolution of ten decimal places, you would use this:

nodel s. Fl oat Fi el d(..., max_digits=19, deci mal _pl aces=10)

ImageField

Like Fi | eFi el d, but validates that the uploaded object is a valid image. It has two extra optional arguments,
hei ght _field and wi dt h_fi el d, which, if set, will be autopopulated with the height and width of the image
each time a model instance is saved.

In addition to the special get _FI ELD * methods that are available for Fi | eFi el d, an | mageFi el d also has
get _FIELD hei ght() and get _FI ELD wi dt h() methods. These are documented in Appendix C.

| mageFi el d requires the Python Imaging Library (http://www.pythonware.com/products/pil/).

IntegerField

An integer.

IPAddressField

An IP address, in string format (e.g., "24.124. 1. 30").

NullBooleanField

Like a Bool eanFi el d, but allows None/NULL as one of the options. Use this instead of a Bool eanFi el d with
nul | =True.

PhoneNumberField

A Char Fi el d that checks that the value is a valid U.S.-style phone number (in the format XXX- XXX- XXXX).

Note

If you need to represent a phone number from another country, check the
dj ango. contrib. |l ocal fl avor package to see if field definitions for your country are included.

PositivelntegerField

Like an | nt eger Fi el d, but must be positive.

PositiveSmallintegerField

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

http://www.pythonware.com/products/pil/

Appendix B: Model Definition Reference

Like a Posi tivel nteger Fi el d, but only allows values under a certain point. The maximum value allowed by
these fields is database dependent, but since databases have a 2-byte small integer field, the maximum
positive small integer is usually 65,535.

SlugField

“Slug” is a newspaper term. A slug is a short label for something, containing only letters, numbers,
underscores, or hyphens. They’re generally used in URLs.

Like a Char Fi el d, you can specify nax| engt h. If max| engt h is not specified, Django will use a default length of
50.

A Sl ugFi el d implies db_i ndex=Tr ue since slugs are primarily used for database lookups.

Sl ugFi el d accepts an extra option, prepopul at e_f r om, which is a list of fields from which to autopopulate the
slug, via JavaScript, in the object’s admin form:

nodel s. Sl ugFi el d(prepopul ate_f porme("pre_nane", "nanme"))

prepopul at e_fromdoesn’t accept Dat eTi neFi el d names as arguments.

SmallintegerField

Like an | nt eger Fi el d, but only allows values in a certain database-dependent range (usually -32,768 to
+32,767).

TextField

An unlimited-length text field.

TimeField

A time of day. It accepts the same autopopulation options as Dat eFi el d and Dat eTi neFi el d.

URLField

A field for a URL. If the verify_exi sts option is Tr ue (the default), the URL given will be checked for existence
(i.e., the URL actually loads and doesn’t give a 404 response).

Like other character fields, URLFi el d takes the nax| engt h argument. If you don’t specify naxl| engt h, a default
of 200 is used.

USStateField

A two-letter U.S. state abbreviation.

Note

If you need to represent other countries or states, look first in the dj ango. contri b. | ocal fl avor
package to see if Django already includes fields for your locale.

XMLField

A Text Fi el d that checks that the value is valid XML that matches a given schema. It takes one required
argument, schena_pat h, which is the filesystem path to a RELAX NG (http://www.relaxng.org/) schema
against which to validate the field.

Requires j i ng (http://thaiopensource.com/relaxng/jing.html) to validate the XML.

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

http://www.relaxng.org/
http://thaiopensource.com/relaxng/jing.html

Appendix B: Model Definition Reference

Universal Field Options

The following arguments are available to all field types. All are optional.

null

If True, Django will store empty values as NULL in the database. The default is Fal se.

Note that empty string values will always get stored as empty strings, not as NULL. Only use nul | =Tr ue for
nonstring fields such as integers, Booleans, and dates. For both types of fields, you will also need to set

bl ank=Tr ue if you wish to permit empty values in forms, as the nul | parameter only affects database storage
(see the following section, titled “blank”).

Avoid using nul | on string-based fields such as Char Fi el d and Text Fi el d unless you have an excellent
reason. If a string-based field has nul | =Tr ue, that means it has two possible values for “no data”: NULL and
the empty string. In most cases, it's redundant to have two possible values for “no data”; Django’s convention
is to use the empty string, not NULL.

blank

If True, the field is allowed to be blank. The default is Fal se.

Note that this is different from nul | . nul | is purely database related, whereas bl ank is validation related. If a
field has bl ank=Tr ue, validation on Django’s admin site will allow entry of an empty value. If a field has
bl ank=Fal se, the field will be required.

choices

An iterable (e.g., a list, tuple, or other iterable Python object) of two tuples to use as choices for this field.

If this is given, Django’s admin interface will use a select box instead of the standard text field and will limit
choices to the choices given.

A choices list looks like this:

YEAR | N_SCHOOL_CHO CES = (
('"FR, 'Freshman'),
(SO, 'Sophonore'),
("JR, "Junior'),
("SR, "Senior'),
("CGR, 'Gaduate'),

The first element in each tuple is the actual value to be stored. The second element is the human-readable
name for the option.

The choices list can be defined either as part of your model class:

cl ass Foo(nodel s. Model) :
GENDER_CHO CES = (
(M, "Mle"),
("F, '"Female'),
)
gender = nodel s. Char Fi el d(max| engt h=1, choi ces=GENDER_CHO CES)

or outside your model class altogether:

GENDER_CHOI CES = (
(M, 'Mle'),

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

("F, '"Fermale'),
)

cl ass Foo(nodel s. Model) :
gender = nodel s. Char Fi el d(max| engt h=1, choi ces=GENDER_CHO CES)

For each model field that has choi ces set, Django will add a method to retrieve the human-readable name for
the field’s current value. See Appendix C for more details.

db_column

The name of the database column to use for this field. If this isn’t given, Django will use the field’s name. This
is useful when you’re defining a model around a database that already exists.

If your database column name is an SQL reserved word, or if it contains characters that aren’t allowed in
Python variable names (notably the hyphen), that’s OK. Django quotes column and table names behind the
scenes.

db_index

If True, Django will create a database index on this column when creating the table (i.e., when running
manage. py syncdb). ta default —-

The default value for the field.

editable

If Fal se, the field will not be editable in the admin interface or via form processing. The default is Tr ue.

help_text

Extra “help” text to be displayed under the field on the object’s admin form. It’s useful for documentation even
if your object doesn’t have an admin form.

primary_key

If True, this field is the primary key for the model.

If you don’t specify pri mary_key=True for any fields in your model, Django will automatically add this field:
id = nodels. AutoField('ID, primry_key=True)

Thus, you don’t need to set pri mary_key=Tr ue on any of your fields unless you want to override the default
primary-key behavior.

primary_key=True implies bl ank=Fal se, nul | =Fal se, and uni que=Tr ue. Only one primary key is allowed on
an object.

radio_admin

By default, Django’s admin uses a select-box interface (<select>) for fields that are For ei gnKey or have
choi ces set. If radi o_adni n is set to Tr ue, Django will use a radio-button interface instead.

Don’t use this for a field unless it's a For ei gnKey or has choi ces set.

unique

If True, the value for this field must be unique throughout the table.

unique_for_date

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

Set to the name of a Dat eFi el d or Dat eTi neFi el d to require that this field be unique for the value of the date
field, for example:

class Story(nodel s. Model) :
pub_date = nodel s. Dat eTi neFi el d()
slug = nodel s. Sl ugFi el d(uni que_f or _dat e="pub_dat e")

In the preceding code, Django won't allow the creation of two stories with the same slug published on the same
date. This differs from using a uni que_t oget her constraint in that only the date of the pub_dat e field is taken
into account; the time doesn’t matter.

unique_for_month

Like uni que_f or _dat e, but requires the field to be unique with respect to the month of the given field.

unique_for_year

Like uni que_f or _dat e and uni que_f or _nont h, but for an entire year.

verbose _name

Each field type, except for For ei gnKey, ManyToManyFi el d, and OneToOneFi el d, takes an optional first
positional argument — a verbose name. If the verbose name isn’t given, Django will automatically create it
using the field’s attribute name, converting underscores to spaces.

In this example, the verbose name is "Person's first nanme":

first _nanme = nodel s. CharField("Person's first nanme", nmaxl ength=30)
In this example, the verbose name is "first nane":

first_nanme = nodel s. Char Fi el d(max| engt h=30)

For ei gnKey, ManyToManyFi el d, and OneToOneFi el d require the first argument to be a model class, so use the
ver bose_nane keyword argument:

pol | = nodel s. Forei gnKey(Pol |, verbose nane="the related poll")
sites = nodel s. ManyToManyFi el d(Site, verbose nanme="l|ist of sites")
pl ace = nodel s. OneToOneFi el d(Pl ace, verbose nane="rel ated pl ace")

The convention is not to capitalize the first letter of the ver bose_nane. Django will automatically capitalize the
first letter where it needs to.

Relationships

Clearly, the power of relational databases lies in relating tables to each other. Django offers ways to define the
three most common types of database relationships: many-to-one, many-to-many, and one-to-one.

However, the semantics of one-to-one relationships are being revisited as this book goes to print, so they're

not covered in this section. Check the online documentation for the latest information.

Many-to-One Relationships

To define a many-to-one relationship, use For ei gnKey. You use it just like any other Fi el d type: by including
it as a class attribute of your model.

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

For ei gnKey requires a positional argument: the class to which the model is related.

For example, if a Car model has a Manuf act urer — that is, a Manuf act ur er makes multiple cars but each Car
only has one Manuf act urer — use the following definitions:

cl ass Manuf act urer (nodel s. Mobdel) :

cl ass Car (nodel s. Model) :
manuf act urer = nodel s. For ei gnKey(Manuf act ur er)

To create a recursive relationship — an object that has a many-to-one relationship with itself — use
nodel s. Forei gnKey('sel f') :

cl ass Enpl oyee(nodel s. Model) :
manager = nodel s. Forei gnKey(' sel f')

If you need to create a relationship on a model that has not yet been defined, you can use the name of the
model, rather than the model object itself:

cl ass Car (nodel s. Model) :
manuf act urer = nodel s. For ei gnKey(' Manuf acturer")

cl ass Manuf act ur er (nodel s. Mbdel) :

Note, however, that you can only use strings to refer to models in the same nodel s. py file — you cannot use a

string to reference a model in a different application, or to reference a model that has been imported from
elsewhere.

Behind the scenes, Django appends " _i d" to the field name to create its database column name. In the
preceding example, the database table for the Car model will have a nanuf act urer _i d column. (You can
change this explicitly by specifying db_col umm; see the earlier “db_column” section.) However, your code
should never have to deal with the database column name, unless you write custom SQL. You'll always deal
with the field names of your model object.

It's suggested, but not required, that the name of a For ei gnKey field (manuf act ur er in the example) be the
name of the model, in lowercase letters. You can, of course, call the field whatever you want, for example:

cl ass Car (nodel s. Model) :
conmpany_t hat _makes_it = nodel s. For ei gnKey(Manuf act ur er)
#o...

For ei gnKey fields take a number of extra arguments for defining how the relationship should work (see Table
B-5). All are optional.

Table B-5. ForeignKey Options

Argument Description

edit_inline If not Fal se, this related object is edited “inline” on the related object’s page.
This means that the object will not have its own admin interface. Use either
nodel s. TABULAR or nodel s. STACKED, which, respectively, designate whether the
inline-editable objects are displayed as a table or as a “stack” of fieldsets.

limt_choices_to A dictionary of lookup arguments and values (see Appendix C) that limit the

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

max_num.i n_admn

m n_num.in_admn

num extra_on_change

num_i n_adm n

raw_i d_admn

rel at ed_nane

to field

available admin choices for this object. Use this with functions from the Python
dat et i me module to limit choices of objects by date. For example, the following:

limt_choices to = {'pub_date_ |te': datetine.now
only allows the choice of related objects with a pub_dat e before the current
date/time to be chosen.

Instead of a dictionary, this can be a Q object (see Appendix C) for more complex
queries.

This is not compatible with edi t _i nl i ne.

For inline-edited objects, this is the maximum number of related objects to
display in the admin interface. Thus, if a pizza could have only up to ten
toppings, max_num i n_adm n=10 would ensure that a user never enters more
than ten toppings.

Note that this doesn’t ensure more than ten related toppings ever get created. It
simply controls the admin interface; it doesn’t enforce things at the Python API
level or database level.

The minimum number of related objects displayed in the admin interface.
Normally, at the creation stage, num i n_adni n inline objects are shown, and at
the edit stage, num extra_on_change blank objects are shown in addition to all
pre-existing related objects. However, no fewer than ni n_num i n_adni n related
objects will ever be displayed.

The number of extra blank related-object fields to show at the change stage.

The default number of inline objects to display on the object page at the add
stage.

Only display a field for the integer to be entered instead of a drop-down menu.
This is useful when related to an object type that will have too many rows to
make a select box practical.

This is not used with edit _inline.
The name to use for the relation from the related object back to this one. See
Appendix C for more information.

The field on the related object that the relation is to. By default, Django uses the
primary key of the related object.

Many-to-Many Relationships

To define a many-to-many relationship, use ManyToManyFi el d. Like For ei gnKey, ManyToManyFi el d requires a

positional argument: the class to which the model is related.

For example, if a Pi zza has multiple Toppi ng objects — that is, a Toppi ng can be on multiple pizzas and each

Pi zza has multiple toppings — here’s how you’d represent that:

cl ass Toppi ng(nodel s. Mbdel) :

cl ass Pi zza(nodel s. Model) :
toppi ngs = nodel s. ManyToManyFi el d(Toppi ng)

As with For ei gnKey, a relationship to self can be defined by using the string ' sel f' instead of the model

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

name, and you can refer to as-yet undefined models by using a string containing the model name. However,
you can only use strings to refer to models in the same nodel s. py file — you cannot use a string to reference
a model in a different application, or to reference a model that has been imported from elsewhere.

It's suggested, but not required, that the name of a ManyToManyFi el d (t oppi ngs in the example) be a plural
term describing the set of related model objects.

Behind the scenes, Django creates an intermediary join table to represent the many-to-many relationship.

It doesn’t matter which model gets the ManyToManyFi el d, but you need it in only one of the models — not in
both.

If you're using the admin interface, ManyToManyFi el d instances should go in the object that’'s going to be
edited in the admin interface. In the preceding example, t oppi ngs is in Pi zza (rather than Toppi ng having a
pi zzas ManyToManyFi el d) because it’'s more natural to think about a Pi zza having toppings than a topping
being on multiple pizzas. The way it's set up in the example, the Pi zza admin form would let users select the
toppings.

ManyToManyFi el d objects take a number of extra arguments for defining how the relationship should work (see
Table B-6). All are optional.

Table B-6. ManyToManyField Options

Argument Description

rel at ed_nane The name to use for the relation from the related object back to this one. See
Appendix C for more information.

filter_interface Use a nifty, unobtrusive JavaScript “filter” interface instead of the usability-
challenged <sel ect nultipl e>in the admin form for this object. The value
should be nodel s. HORI ZONTAL or nodel s. VERTI CAL (i.e., should the interface
be stacked horizontally or vertically).

limt_choices_to See the description under For ei gnKey .
symmetri cal Only used in the definition of ManyToManyFi el d on self. Consider the following
model:

cl ass Person(nodel s. Model) :
friends = nodel s. ManyToManyFi el d("sel f")

When Django processes this model, it identifies that it has a ManyToManyFi el d
on itself, and as a result, it doesn’t add a person_set attribute to the Per son
class. Instead, the ManyToManyFi el d is assumed to be symmetrical — that is, if
I am your friend, then you are my friend.

If you do not want symmetry in ManyToMany relationships with sel f, set
symmetri cal to Fal se. This will force Django to add the descriptor for the
reverse relationship, allowing ManyToMany relationships to be nonsymmetrical.

db_table The name of the table to create for storing the many-to-many data. If this is

not provided, Django will assume a default name based upon the names of the
two tables being joined.

Model Metadata Options

Model-specific metadata lives in a cl ass Met a defined in the body of your model class:

cl ass Book(nodel s. Mbdel) :
title = nodel s. CharFi el d(maxl engt h=100)

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

class Meta:
nodel netadata options go here

Model metadata is “anything that’s not a field,” such as ordering options and so forth.

The sections that follow present a list of all possible Met a options. No options are required. Adding cl ass Meta
to a model is completely optional.

db_table

The name of the database table to use for the model.

To save you time, Django automatically derives the name of the database table from the name of your model
class and the application that contains it. A model’s database table name is constructed by joining the model’s
“app label” — the name you used in nanage. py startapp — to the model’s class name, with an underscore
between them.

For example, if you have an application books (as created by nanage. py startapp books), a model defined as
cl ass Book will have a database table named books.

To override the database table name, use the db_t abl e parameter in cl ass Mt a:

cl ass Book(nodel s. Mbdel) :

cl ass Meta:
db_table = "things_to_read

If this isn’t given, Django will use app_| abel + + nodel _cl ass_nane. See the section “Table Names” for

more information.
If your database table name is an SQL reserved word, or it contains characters that aren’t allowed in Python

variable names (notably the hyphen), that's OK. Django quotes column and table names behind the scenes.

get_latest_by

The name of a Dat eFi el d or Dat eTi neFi el d in the model. This specifies the default field to use in your model
Manager ‘s | at est () method.

Here’s an example:

cl ass Cust oner O der (nodel s. Model) :
order _date = nodel s. Dat eTi neFi el d()

class Meta:
get | atest by = "order_date"

See Appendix C for more information on the | at est () method.

order_with_respect_to

Marks this object as “orderable” with respect to the given field. This is almost always used with related objects
to allow them to be ordered with respect to a parent object. For example, if an Answer relates to a Questi on
object, and a question has more than one answer, and the order of answers matters, you'd do this:

cl ass Answer (nbdel s. Mbdel) :

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

questi on = nodel s. Forei gnKey(Questi on)
#o...

cl ass Meta:
order with respect to = 'question'

ordering
The default ordering for the object, for use when obtaining lists of objects:

cl ass Book(nodel s. Mbdel) :
title = nodel s. CharFi el d(maxl engt h=100)

cl ass Meta:
ordering = ["title']

This is a tuple or list of strings. Each string is a field name with an optional - prefix, which indicates
descending order. Fields without a leading - will be ordered ascending. Use the string " ?" to order randomly.

For example, to order by a titl e field in ascending order (i.e., A-Z), use this:
ordering = ['title']

To order by titl e in descending order (i.e., Z-A), use this:

ordering = ['-title']

To order by titl e in descending order, and then by titl e in ascending order, use this:
ordering = ['-title', "author']

Note that, regardless of how many fields are in or deri ng, the admin site uses only the first field.

permissions

Extra permissions to enter into the permissions table when creating this object. Add, delete, and change
permissions are automatically created for each object that has adni n set. This example specifies an extra
permission, can_del i ver _pi zzas:

cl ass Enpl oyee(nodel s. Model) :

cl ass Meta:
perm ssions = (
("can_del i ver _pizzas", "Can deliver pizzas"),

This is a list or tuple of two tuples in the format (per ni ssi on_code, hunan_r eadabl e_perni ssi on_nane) .

See Chapter 12 for more on permissions.

unique_together

Sets of field names that, taken together, must be unique:

cl ass Enpl oyee(nodel s. Model) :
departnent = nodel s. Forei gnKey(Depart nent)

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

ext ensi on = nodel s. Char Fi el d(max| engt h=10)

cl ass Meta:
uni que_together = [("departnment", "extension")]

This is a list of lists of fields that must be unique when considered together. It’s used in the Django admin
interface and is enforced at the database level (i.e., the appropriate UNl QUE statements are included in the
CREATE TABLE statement).

verbose _name

A human-readable name for the object, singular:

cl ass Cust oner O der (nodel s. Mbdel) :
order _date = nodel s. Dat eTi neFi el d()

cl ass Meta:
ver bose_nane = "order"

If this isn’t given, Django will use a adapted version of the class name in which Canel Case becomes

canel case.

verbose_name_plural

The plural name for the object:

cl ass Sphynx(nodel s. Model) :

class Meta:
ver bose_name_plural = "sphynges"

If this isn’t given, Django will add an “s” to the ver bose_nane.

Managers

A Manager is the interface through which database query operations are provided to Django models. At least
one Manager exists for every model in a Django application.

The way Manager classes work is documented in Appendix C. This section specifically touches on model options

that customize Manager behavior.

Manager Names

By default, Django adds a Manager with the name obj ect s to every Django model class. However, if you want
to use obj ect s as a field name, or if you want to use a name other than obj ect s for the Manager , you can
rename it on a per-model basis. To rename the Manager for a given class, define a class attribute of type
nodel s. Manager () on that model, for example:

from dj ango. db i nport nodel s

cl ass Person(nodel s. Mbdel) :

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

peopl e = nodel s. Manager ()

Using this example model, Per son. obj ect s will generate an Attri but eError exception (since Per son doesn’t
have a obj ect s attribute), but Per son. peopl e. al | () will provide a list of all Per son objects.

Custom Managers

You can use a custom Manager in a particular model by extending the base Manager class and instantiating
your custom Manager in your model.

There are two reasons you might want to customize a Manager : to add extra Manager methods, and/or to
modify the initial Quer ySet the Manager returns.

Adding Extra Manager Methods

Adding extra Manager methods is the preferred way to add “table-level” functionality to your models. (For
“row-level” functionality — that is, functions that act on a single instance of a model object — use model
methods (see below), not custom Manager methods.)

A custom Manager method can return anything you want. It doesn’t have to return a QuerySet .

For example, this custom Manager offers a method wi t h_count s() , which returns a list of all Qpi ni onPol |
objects, each with an extra num r esponses attribute that is the result of an aggregate query:

from dj ango. db inport connection
cl ass Pol | Manager (nodel s. Manager) :

def with_counts(self):

cursor = connection.cursor()

cursor.execute("""
SELECT p.id, p.question, p.poll_date, COUNT(*)
FROM pol | s_opi ni onpol | p, polls_response r
WHERE p.id = r.poll_id
GROUP BY 1, 2, 3
ORDER BY 3 DESC'"")

result list =[]

for row in cursor.fetchall():
p = self.nodel (i d=row 0], question=row 1], poll _date=row 2])
p. num responses = row 3]
result _|ist.append(p)

return result |ist

cl ass Opi ni onPol | (nbdel s. Model) :
questi on = nodel s. Char Fi el d(max| engt h=200)
pol | _date = nodel s. Dat eFi el d()
obj ects = Pol | Manager ()

cl ass Response(nodel s. Model) :
pol | = nodel s. For ei gnKey(Pol |)
person_nanme = nodel s. Char Fi el d(max| engt h=50)
response = nodel s. Text Fi el d()

With this example, you’d use Opi ni onPol | . obj ects. wi t h_count s() to return that list of Opi ni onPol | objects
with num r esponses attributes.

Another thing to note about this example is that Manager methods can access sel f. nodel to get the model

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

class to which they’re attached.

Modifying Initial Manager QuerySets

A Manager ‘s base Quer ySet returns all objects in the system. For example, using this model:

cl ass Book(nodel s. Model):
title = nodel s. CharFi el d(maxl engt h=100)
aut hor = nodel s. Char Fi el d(max| engt h=50)

the statement Book. obj ects. al | () will return all books in the database.

You can override the base QuerySet by overriding the Manager . get _query_set () method. get _query_set ()
should return a Quer ySet with the properties you require.

For example, the following model has two managers — one that returns all objects, and one that returns only
the books by Roald Dahl:

First, define the Manager subcl ass.
cl ass Dahl BookManager (nodel s. Manager) :
def get_query_set (self):
return super (Dahl BookManager, self).get _query set().filter(author="Roald Dahl")

Then hook it into the Book nodel explicitly.
cl ass Book(nodel s. Mbdel) :
title = nodel s. CharFi el d(maxl engt h=100)
aut hor = nodel s. Char Fi el d(max| engt h=50)

obj ects = nopdel s. Manager () # The default nmanager.
dahl _obj ects = Dahl BookManager () # The Dahl - speci fic nmanager.

With this sample model, Book. obj ects. al | () will return all books in the database, but
Book. dahl _obj ects. al | () will return only the ones written by Roald Dahl.

Of course, because get _query_set () returns a QuerySet object, youcan usefilter(), exclude(), and all
the other Quer ySet methods on it. So these statements are all legal:

Book. dahl _obj ects. all ()
Book. dahl _objects.filter(title="NMatilda')
Book. dahl _obj ects. count ()

This example also points out another interesting technique: using multiple managers on the same model. You
can attach as many Manager () instances to a model as you’d like. This is an easy way to define common
“filters” for your models. Here’'s an example:

cl ass Mal eManager (nodel s. Manager) :
def get_query_set (self):
return super (Ml eManager, self).get _query set().filter(sex='"M)

cl ass Fenal eManager (nodel s. Manager) :
def get _query_set(self):
return super (Fenal eManager, self).get _query set().filter(sex="F")

cl ass Person(nodel s. Mobdel) :
first_name = nodel s. Char Fi el d(maxl engt h=50)
| ast _nane = nodel s. Char Fi el d(maxl engt h=50)
sex = nodel s. Char Fi el d(maxl engt h=1, choices=(('M, '"Male'), ('"F, 'Fenale')))

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

peopl e = nodel s. Manager ()
men = Mal eManager ()
worren = Femal eManager ()

This example allows you to request Person. nen. al | (), Person. wonen. al | (), and Person. people.all (),
yielding predictable results.

If you use custom Manager objects, take note that the first Manager Django encounters (in order by which
they’re defined in the model) has a special status. Django interprets the first Manager defined in a class as the
“default” Manager . Certain operations — such as Django’s admin site — use the default Manager to obtain lists
of objects, so it’s generally a good idea for the first Manager to be relatively unfiltered. In the last example, the
peopl e Manager is defined first — so it's the default Manager .

Model Methods

Define custom methods on a model to add custom “row-level” functionality to your objects. Whereas Manager
methods are intended to do “tablewide” things, model methods should act on a particular model instance.

This is a valuable technique for keeping business logic in one place: the model. For example, this model has a
few custom methods:

cl ass Person(nodel s. Model) :
first_name = nodel s. Char Fi el d(maxl engt h=50)
| ast _nane = nodel s. Char Fi el d(maxl engt h=50)
birth_date = nodel s. Dat eFi el d()
address = nodel s. Char Fi el d(max| engt h=100)
city = nodel s. Char Fi el d(max| engt h=50)
state = nodels.USStateField() # Yes, this is Anerica-centric...

def baby_booner _status(self):
"""Returns the person's baby-booner status.
i mport datetine
if datetine.date(1945, 8, 1) <= self.birth date <= datetine.date(1964, 12,

31):
return "Baby booner"
if self.birth date < datetine.date(1945, 8, 1):
return "Pre-booner"
return "Post - booner"

def is_m dwestern(self):
"""Returns True if this person is fromthe M dwest.
return self.state in ("IL", "W', "M"', "IN, "OH, "IlA, "M))

@property
def full _name(self):
"""Returns the person's full nanme."""
return '% %' % (self.first_nane, self.last_nane)

The last method in this example is a property — an attribute implemented by custom getter/setter user code.
Properties are a nifty trick added to Python 2.2; you can read more about them at
http://www.python.org/download/releases/2.2/descrintro/#property.

There are also a handful of model methods that have “special” meaning to Python or Django. These methods
are described in the sections that follow.

__str

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

http://www.python.org/download/releases/2.2/descrintro/#property

Appendix B: Model Definition Reference

__str__() is a Python “magic method” that defines what should be returned if you call str () on the object.
Django uses str(obj) (or the related function, uni code(obj), described shortly) in a number of places, most
notably as the value displayed to render an object in the Django admin site and as the value inserted into a
template when it displays an object. Thus, you should always return a nice, human-readable string for the
object’'s __str___. Although this isn’t required, it's strongly encouraged.

Here’s an example:

cl ass Person(nodel s. Model) :
first_name = nodel s. Char Fi el d(maxl engt h=50)
| ast _nane = nodel s. Char Fi el d(maxl engt h=50)

def _ str__ (self):
return "% %' % (self.first_nane, self.l|ast_nane)

get_absolute_url

Define a get _absol ute_url () method to tell Django how to calculate the URL for an object, for example:

def get _absolute_ url (self):
return "/people/%/" %self.id

Django uses this in its admin interface. If an object defines get _absol ute_url (), the object-editing page will
have a “View on site” link that will take you directly to the object’s public view, according to
get _absolute_url ().

Also, a couple of other bits of Django, such as the syndication-feed framework, use get _absolute_url () as a
convenience to reward people who've defined the method.

It's good practice to use get _absol ute_url () in templates, instead of hard-coding your objects’ URLs. For
example, this template code is bad:

{{ object.nane }}
But this template code is good:
{{ object.nane }}

The problem with the way we just wrote get _absol ute_url () is that it slightly violates the DRY principle: the
URL for this object is defined both in the URLconf file and in the model.

You can further decouple your models from the URLconf using the per mal i nk decorator. This decorator is
passed the view function, a list of positional parameters, and (optionally) a dictionary of named parameters.
Django then works out the correct full URL path using the URLconf, substituting the parameters you have given
into the URL. For example, if your URLconf contained a line such as the following:

(r'~people/ (\d+)/$', 'people.views.details"),

your model could have a get _absol ute_ur|l method that looked like this:

@odel s. per nal i nk
def get absolute_ url (self):
return (' people.views.details', [str(self.id)])

Similarly, if you had a URLconf entry that looked like this:

(r'/archivel (?P<year>\d{4})/(?P<nont h>\d{1, 2})/ (?P<day>\d{1, 2})/$', archive_view)

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference
you could reference this using per nal i nk() as follows:

@rodel s. per nal i nk
def get _absolute_ url (self):
return ('archive view, (), {
"year': self.created.year,
"mont h' : sel f.created. nont h,
' sel f. created. day})

day' :
Notice that we specify an empty sequence for the second argument in this case, because we want to pass only
keyword arguments, not named arguments.

In this way, you’re tying the model’s absolute URL to the view that is used to display it, without repeating the
URL information anywhere. You can still use the get _absol ute_ur|l method in templates, as before.

Executing Custom SQL

Feel free to write custom SQL statements in custom model methods and module-level methods. The object

dj ango. db. connecti on represents the current database connection. To use it, call connecti on. cursor () to
get a cursor object. Then, call cursor. execute(sql, [parans]) to execute the SQL, and cursor. fetchone()
or cursor.fetchal | () to return the resulting rows:

def ny_custom sql (self):
from dj ango. db i nport connection
cursor = connection. cursor()
cursor. execut e("SELECT foo FROM bar WHERE baz = %", [self.baz])
row = cursor.fetchone()
return row

connecti on and cur sor mostly implement the standard Python DB-API (http://www.python.org/peps/pep-
0249.html). If you're not familiar with the Python DB-API, note that the SQL statement in cur sor. execut e()
uses placeholders, " %", rather than adding parameters directly within the SQL. If you use this technique, the
underlying database library will automatically add quotes and escaping to your parameter(s) as necessary.
(Also note that Django expects the " %" placeholder, not the " ?" placeholder, which is used by the SQLite
Python bindings. This is for the sake of consistency and sanity.)

A final note: If all you want to do is use a custom WHERE clause, you can just use the wher e, t abl es, and
par ans arguments to the standard lookup API. See Appendix C.

Overriding Default Model Methods

As explained in Appendix C, each model gets a few methods automatically — most notably, save() and
del et e() . You can override these methods to alter behavior.

A classic use-case for overriding the built-in methods is if you want something to happen whenever you save
an object, for example:

cl ass Bl og(nodel s. Mbdel) :
nane = nodel s. Char Fi el d(max| engt h=100)
tagline = nodel s. Text Fi el d()

def save(self):
do_sonet hi ng()
super (Bl og, self).save() # Call the "real"” save() nethod.

do_sonet hi ng_el se()

You can also prevent saving:

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

http://www.python.org/peps/pep-0249.html
http://www.python.org/peps/pep-0249.html

Appendix B: Model Definition Reference

cl ass Bl og(nodel s. Mbdel) :
nane = nodel s. Char Fi el d(max| engt h=100)
tagline = nodel s. Text Fi el d()

def save(self):
if self.name == "Yoko Ono's bl og":
return # Yoko shall never have her own bl og!
el se:
super (Bl og, self).save() # Call the "real" save() nethod

Admin Options

The Adni n class tells Django how to display the model in the admin site.

The following sections present a list of all possible Adrmi n options. None of these options is required. To use an
admin interface without specifying any options, use pass, like so:

class Adm n:
pass

Adding cl ass Adnm n to a model is completely optional.

date hierarchy

Set dat e_hi er archy to the name of a Dat eFi el d or Dat eTi neFi el d in your model, and the change list page
will include a date-based navigation using that field.

Here’s an example:

cl ass Custoner O der (nodel s. Model) :
order _date = nodel s. Dat eTi neFi el d()

class Admi n:
date_hi erarchy = "order_date"

fields

Set fi el ds to control the layout of admin interface “add” and “change” pages.

fiel ds is a pretty complex nested data structure best demonstrated with an example. The following is taken
from the Fl at Page model that’s part of dj ango. contri b. f| at pages:

cl ass Fl at Page(nodel s. Model) :

cl ass Admi n:

fields = (
(None, {
"fields': (‘url', "title', 'content', 'sites')
Bl
(" Advanced options', {
‘classes': 'collapse',
"fields' : ('enable comments', 'registration_required',

"tenpl ate_nane')

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

1.

Formally, fi el ds is a list of two tuples, in which each two-tuple represents a <fi el dset > on the admin form
page. (A <fi el dset > is a “section” of the form.)

The two-tuples are in the format (nane, field_options), where nane is a string representing the title of the
fieldset and fi el d_opti ons is a dictionary of information about the fieldset, including a list of fields to be
displayed in it.

If fields isn’t given, Django will default to displaying each field that isn't an Aut oFi el d and has
edi t abl e=Tr ue, in a single fieldset, in the same order as the fields are defined in the model.

The fi el d_opti ons dictionary can have the keys described in the sections that follow.
fields
A tuple of field names to display in this fieldset. This key is required.

To display multiple fields on the same line, wrap those fields in their own tuple. In this example, the
first_nane and | ast _name fields will display on the same line:

"fields': (('first_nanme', 'last_name'), 'address', 'city', 'state'),
classes

A string containing extra CSS classes to apply to the fieldset.

Apply multiple classes by separating them with spaces:
‘classes': 'wide extrapretty',

Two useful classes defined by the default admin site stylesheet are col | apse and wi de. Fieldsets with the
col | apse style will be initially collapsed in the admin site and replaced with a small “click to expand” link.
Fieldsets with the wi de style will be given extra horizontal space.

description

A string of optional extra text to be displayed at the top of each fieldset, under the heading of the fieldset. It's
used verbatim, so you can use any HTML and you must escape any special HTML characters (such as
ampersands) yourself.

Js
A list of strings representing URLs of JavaScript files to link into the admin screen via <scri pt src=""> tags.

This can be used to tweak a given type of admin page in JavaScript or to provide “quick links” to fill in default
values for certain fields.

If you use relative URLs — that is, URLs that don’t start with http:// or / — then the admin site will

automatically prefix these links with set ti ngs. ADM N_MEDI A_PREFI X.

list_display

Set | i st _di spl ay to control which fields are displayed on the change list page of the admin.

If you don’t set | i st_di spl ay, the admin site will display a single column that displays the __str__()
representation of each object.

Here are a few special cases to note about | i st _di spl ay:

= If the field is a For ei gnKey, Django will display the __str__ () of the related object.

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

= ManyToManyFi el d fields aren’t supported, because that would entail executing a separate SQL statement
for each row in the table. If you want to do this nonetheless, give your model a custom method, and add
that method’s name to | i st _di spl ay. (More information on custom methods in | i st _di spl ay shortly.)

= If the field is a Bool eanFi el d or Nul | Bool eanFi el d, Django will display a pretty “on” or “off” icon instead

of True or Fal se.

= If the string given is a method of the model, Django will call it and display the output. This method should
have a short _descri pti on function attribute, for use as the header for the field.

Here’s a full example model:

cl ass Person(nodel s. Model) :
nane = nodel s. Char Fi el d(max| engt h=50)
bi rt hday = nodel s. Dat eFi el d()

cl ass Adnin:
list _display = ('nane', 'decade _born_in")

def decade _born_in(self):
return self.birthday.strftime(" %")[:3] + "0's"
decade_born_in.short_description = 'Birth decade'

= If the string given is a method of the model, Django will HTML-escape the output by default. If you'd
rather not escape the output of the method, give the method an al | ow_t ags attribute whose value is

True.

Here’s a full example model:

cl ass Person(nodel s. Model) :
first_name = nodel s. Char Fi el d(maxl engt h=50)
| ast _nane = nodel s. Char Fi el d(maxl engt h=50)
col or _code = nodel s. Char Fi el d(max| engt h=6)

cl ass Adm n:
list display = ('first_nane', 'last_nane', 'colored_nane')

def col ored_nanme(self):
return '% % % (self.col or_code,
self.first_name, self.last_nane)
col ored_nane. al | ow tags = True

= If the string given is a method of the model that returns Tr ue or Fal se, Django will display a pretty “on”
or “off” icon if you give the method a bool ean attribute whose value is Tr ue.

Here’s a full example model:

cl ass Person(nodel s. Model) :
first_name = nodel s. Char Fi el d(maxl engt h=50)
bi rt hday = nodel s. Dat eFi el d()

class Adm n:
list display = ('"nane', 'born_in fifties")

def born_in_fifties(self):
return self.birthday.strftime(' %")[:3] ==

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

born_in_fifties.boolean = True

= The __str__() methods are just as valid in | i st _di spl ay as any other model method, so it’s perfectly OK
to do this:

list display = ('__str__ ', "sonme_other field")

= Usually, elements of | i st _di spl ay that aren’t actual database fields can’t be used in sorting (because

Django does all the sorting at the database level).

However, if an element of | i st _di spl ay represents a certain database field, you can indicate this fact by
setting the adnmi n_order _fi el d attribute of the item, for example:

cl ass Person(nodel s. Model) :
first_name = nodel s. Char Fi el d(maxl engt h=50)
col or _code = nodel s. Char Fi el d(max| engt h=6)

class Adni n:
list display = ('first_nane', 'colored first_nane')

def colored first_name(sel f):
return '% % (self.color_code,

sel f.first_nane)
colored first_nanme.all ow tags = True
colored _first_name.adm n_order field = 'first_name'

The preceding code will tell Django to order by the first_nane field when trying to sort by
col ored first_name in the admin site.

list_display_links
Set | i st _display_|inks to control which fields in | i st _di spl ay should be linked to the “change” page for an

object.

By default, the change list page will link the first column — the first field specified in | i st _di spl ay — to the
change page for each item. But | i st _di spl ay_| i nks lets you change which columns are linked. Set
l'ist_display_links to a list or tuple of field names (in the same format as | i st _di spl ay) to link.

I'i st_display_|inks can specify one or many field names. As long as the field names appear in
I'i st_display, Django doesn’t care how many (or how few) fields are linked. The only requirement is that if
you want to use | i st _di spl ay_| i nks, you must define | i st _di spl ay.

In this example, the first_nanme and | ast _nane fields will be linked on the change list page:
cl ass Person(nodel s. Model) :
cl ass Adnmi n:
list display = ('first_nane', 'last_nanme', 'birthday")
list display links = ('first_nanme', 'last_nane')

Finally, note that in order to use | i st _di spl ay_I i nks, you must define | i st _di spl ay, too.
list_filter
Set list_filter to activate filters in the right sidebar of the change list page of the admin interface. This

should be a list of field names, and each specified field should be either a Bool eanFi el d, Dat eFi el d,

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

Dat eTi neFi el d, or For ei gnKey.

This example, taken from the dj ango. contri b. aut h. nodel s. User model, shows how both | i st _di spl ay and
list filter work:

cl ass User (nodel s. Mbdel) :

cl ass Admi n:

list display = ('usernane', 'emmil', 'first_nane', 'last_nane', 'is staff')
list filter = ("is_staff', 'is_superuser')
list_per_page

Set | i st _per _page to control how many items appear on each paginated admin change list page. By default,
this is set to 100.

list_select_related

Set | ist_select _rel ated to tell Django to use sel ect _rel ated() in retrieving the list of objects on the
admin change list page. This can save you a bunch of database queries if you're using related objects in the
admin change list display.

The value should be either True or Fal se. The default is Fal se unless one of the | i st _di spl ay fields is a
For ei gnKey .

For more on sel ect _rel ated() , see Appendix C.

ordering

Set or deri ng to specify how objects on the admin change list page should be ordered. This should be a list or
tuple in the same format as a model’s or deri ng parameter.

If this isn’t provided, the Django admin interface will use the model’s default ordering.

save_as

Set save_as to Tr ue to enable a “save as” feature on admin change forms.

Normally, objects have three save options: “Save,” “Save and continue editing,” and “Save and add another.”
If save_as is True, “Save and add another” will be replaced by a “Save as” button.

“Save as” means the object will be saved as a new object (with a new ID), rather than the old object.

By default, save_as is set to Fal se.

save_on_top

Set save_on_t op to add save buttons across the top of your admin change forms.

Normally, the save buttons appear only at the bottom of the forms. If you set save_on_t op, the buttons will
appear both on the top and the bottom.

By default, save_on_t op is set to Fal se.
search_fields

Set search_fi el ds to enable a search box on the admin change list page. This should be set to a list of field
names that will be searched whenever somebody submits a search query in that text box.

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

Appendix B: Model Definition Reference

These fields should be some kind of text field, such as Char Fi el d or Text Fi el d. You can also perform a
related lookup on a For ei gnKey with the lookup API “follow” notation:

cl ass Enpl oyee(nodel s. Model) :
departnent = nodel s. For ei gnKey(Depart nent)

class Adm n:
search_fields = ['departnent__nane']

When somebody does a search in the admin search box, Django splits the search query into words and returns
all objects that contain each of the words, case insensitive, where each word must be in at least one of
search_fiel ds. For example, if search_fieldsissetto['first_name', 'last_nane'] and a user searches
for j ohn | ennon, Django will do the equivalent of this SQL WHERE clause:

VWHERE (first_nanme ILIKE '% ohn% OR |ast_nane |LIKE "% ohn%)
AND (first _name ILIKE '% ennon% OR |ast_nanme |LIKE ' % ennon%)

For faster and/or more restrictive searches, prefix the field name with an operator, as shown in Table B-7.

Table B-7. Operators Allowed in search_fields

Operator Meaning
A Matches the beginning of the field. For example, if search_fi el ds is set to
["~first_name', '~last_nane'], and a user searches for j ohn | ennon, Django will do the

equivalent of this SQL WHERE clause:

WHERE (first_name ILIKE 'john% OR last_nane |ILIKE 'john%)
AND (first_nane ILIKE 'l ennon% OR last _nane |ILIKE 'l ennon%)

This query is more efficient than the normal ' % ohn% query, because the database only needs
to check the beginning of a column’s data, rather than seeking through the entire column’s
data. Plus, if the column has an index on it, some databases may be able to use the index for
this query, even though it’s a LI KE query.

= Matches exactly, case-insensitive. For example, if search_fi el ds is set to
["=first_name', '=last_nane'] and a user searches for j ohn | ennon, Django will do the
equivalent of this SQL WHERE clause:

VWHERE (first _nane ILIKE 'john' OR |ast_nanme |ILIKE 'john')
AND (first_name ILIKE 'lennon' OR |ast_nane ILIKE 'l ennon')

Note that the query input is split by spaces, so, following this example, it's currently not
possible to search for all records in which first_nane is exactly ' j ohn w nston' (containing a
space).

@ Performs a full-text match. This is like the default search method, but it uses an index.
Currently this is available only for MySQL.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/appendixB/[2009.01.07. 10:42:25]

http://www.djangobook.com/license/
http://mediatemple.net/

Appendix C: Database APl Reference

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Appendix C: Database APl Reference

Django’s database API is the other half of the model API discussed in Appendix B. Once you’'ve defined a
model, you’ll use this APl any time you need to access the database. You've seen examples of this APl in use
throughout the book; this appendix explains all the various options in detail.

Like the model APIs discussed in Appendix B, though these APIs are considered very stable, the Django
developers consistently add new shortcuts and conveniences. It's a good idea to always check the latest
documentation online, available at http://www.djangoproject.com/documentation/0.96/db-api/.

Throughout this reference, we’ll refer to the following models, which might form a simple Weblog application:

from dj ango. db i nport nodel s

cl ass Bl og(nodel s. Mbdel) :
nane = nodel s. Char Fi el d(max_I| engt h=100)
tagline = nodel s. Text Fi el d()

def _ str_ (self):
return sel f.nane

cl ass Aut hor (nodel s. Model) :
nanme = nodel s. Char Fi el d(max_I| engt h=50)
emai | = nodel s. Enai | Fi el d()

def _ str__ (self):
return sel f.nane

cl ass Entry(nodel s. Mbdel) :
bl og = nodel s. For ei gnKey(Bl og)
headl i ne = nodel s. Char Fi el d(max_| engt h=255)
body text = nodels. TextFi el d()
pub_date = nodel s. Dat eTi neFi el d()
aut hors = nodel s. ManyToManyFi el d(Aut hor)

def _ str__ (self):
return sel f. headline

Creating Objects

To create an object, instantiate it using keyword arguments to the model class, and then call save() to save it
to the database:

>>> from nysite. bl og. rodel s i nport Bl og
>>> p = Bl og(nanme="Beatles Blog', tagline="All the |atest Beatles news."')
>>> p. save()

This performs an | NSERT SQL statement behind the scenes. Django doesn’t hit the database until you explicitly

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257
http://www.djangoproject.com/documentation/0.96/db-api/

Appendix C: Database APl Reference

call save() .
The save() method has no return value.

To create an object and save it all in one step see the cr eat e manager method discussed shortly.

What Happens When You Save?

When you save an object, Django performs the following steps:

1. Emit a pre_save signal. This provides a notification that an object is about to be saved. You can
register a listener that will be invoked whenever this signal is emitted. These signals are still in
development and weren’t documented when this book went to press; check the online documentation for
the latest information.

2. Preprocess the data. Each field on the object is asked to perform any automated data modification that
the field may need to perform.

Most fields do no preprocessing — the field data is kept as is. Preprocessing is only used on fields that
have special behavior, like file fields.

3. Prepare the data for the database. Each field is asked to provide its current value in a data type that
can be written to the database.

Most fields require no data preparation. Simple data types, such as integers and strings, are “ready to
write” as a Python object. However, more complex data types often require some modification. For
example, Dat eFi el ds use a Python dat et i ne object to store data. Databases don’t store dat eti ne
objects, so the field value must be converted into an 1ISO-compliant date string for insertion into the
database.

4. Insert the data into the database. The preprocessed, prepared data is then composed into an SQL
statement for insertion into the database.

5. Emit a post_save signal. As with the pre_save signal, this is used to provide notification that an object
has been successfully saved. Again, these signals are not yet documented.

Autoincrementing Primary Keys

For convenience, each model is given an autoincrementing primary key field named i d unless you explicitly
specify pri mary_key=Tr ue on a field (see the section titled “AutoField” in Appendix B).

If your model has an Aut oFi el d, that autoincremented value will be calculated and saved as an attribute on
your object the first time you call save() :

>>> b2 = Bl og(nane=' Cheddar Tal k', tagline="Thoughts on cheese.")
>>> p2.id # Returns None, because b doesn't have an ID yet.
None

>>> h2. save()
>>> b2.id # Returns the ID of your new object.
14

There’s no way to tell what the value of an ID will be before you call save() , because that value is calculated
by your database, not by Django.

If a model has an Aut oFi el d but you want to define a new object’s ID explicitly when saving, just define it
explicitly before saving, rather than relying on the autoassignment of the ID:

>>> b3 = Bl og(id=3, nanme=' Cheddar Tal k', tagline='"Thoughts on cheese."')
>>> p3.id

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

3

>>> p3. save()
>>> b3.id

3

If you assign auto-primary-key values manually, make sure not to use an already existing primary key value!
If you create a new object with an explicit primary key value that already exists in the database, Django will
assume you’re changing the existing record rather than creating a new one.

Given the preceding ' Cheddar Tal k' blog example, this example would override the previous record in the

database:

>>> b4 = Bl og(id=3, name='Not Cheddar', tagline="Anything but cheese.")
>>> b4.save() # Overrides the previous blog with |D=3!

Explicitly specifying auto-primary-key values is mostly useful for bulk-saving objects, when you're confident
you won’t have primary key collision.

Saving Changes to Objects

To save changes to an object that’s already in the database, use save() .

Given a Bl og instance b5 that has already been saved to the database, this example changes its name and
updates its record in the database:

>>> pb5. nane = ' New nane'
>>> p5. save()

This performs an UPDATE SQL statement behind the scenes. Again, Django doesn’t hit the database until you
explicitly call save() .

How Django Knows When to UPDATE and When to | NSERT

You may have noticed that Django database objects use the same save() method for creating and
changing objects. Django abstracts the need to use | NSERT or UPDATE SQL statements.
Specifically, when you call save() , Django follows this algorithm:

= If the object’s primary key attribute is set to a value that evaluates to Tr ue (i.e., a value
other than None or the empty string), Django executes a SELECT query to determine whether
a record with the given primary key already exists.

= |f the record with the given primary key does already exist, Django executes an UPDATE
query.

= If the object’s primary key attribute is not set, or if it's set but a record doesn’t exist, Django
executes an | NSERT.

Because of this, you should be careful not to specify a primary key value explicitly when saving
new objects if you cannot guarantee the primary key value is unused.

Updating For ei gnKey fields works exactly the same way; simply assign an object of the right type to the field
in question:

>>> joe = Author.objects. create(nane="Joe")
>>> entry.author = joe
>>> entry. save()

Django will complain if you try to assign an object of the wrong type.

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

Retrieving Objects

Throughout the book you’ve seen objects retrieved using code like the following:
>>> bl ogs = Bl og.objects.filter(author__name__contai ns="Joe")

There are quite a few “moving parts” behind the scenes here: when you retrieve objects from the database,
you’re actually constructing a Quer ySet using the model’s Manager . This Quer ySet knows how to execute SQL
and return the requested objects.

Appendix B looked at both of these objects from a model-definition point of view; now we’ll look at how they
operate.

A QuerySet represents a collection of objects from your database. It can have zero, one, or many filters —
criteria that narrow down the collection based on given parameters. In SQL terms, a Quer ySet equates to a
SELECT statement, and a filter is a limiting clause such as WHERE or LIM T.

You get a QuerySet by using your model’s Manager . Each model has at least one Manager , and it’s called
obj ect s by default. Access it directly via the model class, like so:

>>> Bl 0g. obj ects
<dj ango. db. nodel s. manager . Manager obj ect at 0x137d00d>

Manager s are accessible only via model classes, rather than from model instances, to enforce a separation
between “table-level” operations and “record-level” operations:

>>> b = Bl og(nane=' Foo', tagline=" Bar')
>>> ph. obj ects
Traceback (nost recent call last):
File "<stdin>", line 1, in <nodul e>
AttributeError: Manager isn't accessible via Blog instances.

The Manager is the main source of QuerySet s for a model. It acts as a “root” Quer ySet that describes all
objects in the model’s database table. For example, Bl og. obj ect s is the initial Quer ySet that contains all Bl og
objects in the database.

Caching and QuerySets

Each QuerySet contains a cache, to minimize database access. It's important to understand how it works, in
order to write the most efficient code.

In a newly created Quer ySet , the cache is empty. The first time a Quer ySet is evaluated — and, hence, a
database query happens — Django saves the query results in the Quer ySet ‘s cache and returns the results that
have been explicitly requested (e.g., the next element, if the Quer ySet is being iterated over). Subsequent
evaluations of the Quer ySet reuse the cached results.

Keep this caching behavior in mind, because it may bite you if you don’t use your
QuerySet " "s correctly. For exanple, the following will create two " QuerySets, evaluate them,
and throw them away:

print [e.headline for e in Entry.objects.all ()]
print [e.pub_date for e in Entry.objects.all ()]

That means the same database query will be executed twice, effectively doubling your database load. Also,
there’s a possibility the two lists may not include the same database records, because an Entry may have
been added or deleted in the split second between the two requests.

To avoid this problem, simply save the Quer ySet and reuse it:

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

queryset = Poll.objects.all ()
print [p.headline for p in queryset] # Evaluate the query set.
print [p.pub_date for p in queryset] # Reuse the cache from the eval uation

Filtering Objects

The simplest way to retrieve objects from a table is to get all of them. To do this, use the al | () method on a
Manager :

>>> Entry. objects.all()

The al | () method returns a Quer ySet of all the objects in the database.

Usually, though, you’ll need to select only a subset of the complete set of objects. To create such a subset, you
refine the initial Quer ySet , adding filter conditions. You’ll usually do this using the filter () and/or excl ude()
methods:

>>> y2006 = Entry.objects.filter(pub_date__year=2006)
>>> not 2006 = Entry. obj ects. excl ude(pub_date_ _year=2006)

filter() and excl ude() both take field lookup arguments, which are discussed in detail shortly.

Chaining Filters

The result of refining a QuerySet is itself a QuerySet , so it's possible to chain refinements together, for

example:
>>> s = Entry.objects.filter(headline_ _startsw th=" Wat")
>>> (s = (@s..exclude(pub_date gte=datetine.datetine. now))

>>> gs = qgs.filter(pub_date gte=datetine.dateti ne(2005, 1, 1))

This takes the initial Quer ySet of all entries in the database, adds a filter, then an exclusion, and then another
filter. The final result is a Quer ySet containing all entries with a headline that starts with “What” that were
published between January 1, 2005, and the current day.

It's important to point out here that QuerySet s are lazy — the act of creating a Quer ySet doesn’t involve any
database activity. In fact, the three preceding lines don’t make any database calls; you can chain filters
together all day long and Django won’t actually run the query until the Quer ySet is evaluated.

You can evaluate a QuerySet in any following ways:

= Iterating: A QuerySet is iterable, and it executes its database query the first time you iterate over it. For
example, the following Quer ySet isn’'t evaluated until it's iterated over in the f or loop:

as Entry. objects.filter(pub_date year=2006)
as gs.filter(headline__icontains="hbill")
for e in gs:

print e.headline

This prints all headlines from 2006 that contain “bill” but causes only one database hit.

= Printing it: A QuerySet is evaluated when you call repr () on it. This is for convenience in the Python
interactive interpreter, so you can immediately see your results when using the API interactively.

= Slicing: As explained in the upcoming “Limiting QuerySets” section, a Quer ySet can be sliced using
Python’s array-slicing syntax. Usually slicing a Quer ySet returns another (unevaluated)™ ~QuerySet™ ", but

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

Django will execute the database query if you use the “step” parameter of slice syntax.
= Converting to a list: You can force evaluation of a QuerySet by calling | i st () on it, for example:
>>> entry list = list(Entry.objects.all())
Be warned, though, that this could have a large memory overhead, because Django will load each element

of the list into memory. In contrast, iterating over a Quer ySet will take advantage of your database to
load data and instantiate objects only as you need them.

Filtered QuerySets Are Unique

Each time you refine a QuerySet , you get a brand-new Quer ySet that is in no way bound to the
previous Quer ySet . Each refinement creates a separate and distinct Quer ySet that can be stored,
used, and reused:

gl = Entry.objects.filter(headline__startsw th="Wat")
g2 = ql. exclude(pub_date gte=datetine.now())
g3 = ql.filter(pub_date gte=datetine.now))

These three Quer ySet s are separate. The first is a base Quer ySet containing all entries that
contain a headline starting with “What”. The second is a subset of the first, with an additional
criterion that excludes records whose pub_dat e is greater than now. The third is a subset of the
first, with an additional criterion that selects only the records whose pub_dat e is greater than
now. The initial QuerySet (gl) is unaffected by the refinement process.

Limiting QuerySets

Use Python’s array-slicing syntax to limit your Quer ySet to a certain number of results. This is the equivalent
of SQL’s LI M T and OFFSET clauses.

For example, this returns the first five entries (LIM T 5):

>>> Entry.objects.all()[:5]

This returns the sixth through tenth entries (OFFSET 5 LIM T 5):

>>> Entry.objects.all ()[5:10]

Generally, slicing a QuerySet returns a new QuerySet — it doesn’t evaluate the query. An exception is if you
use the “step” parameter of Python slice syntax. For example, this would actually execute the query in order to
return a list of every second object of the first ten:

>>> Entry.objects.all()[:10:2]

To retrieve a single object rather than a list (e.g., SELECT foo FROM bar LIMT 1), use a simple index instead
of a slice. For example, this returns the first Ent ry in the database, after ordering entries alphabetically by
headline:

>>> Entry. obj ects.order_by(' headline')[0]
This is roughly equivalent to the following:
>>> Entry. obj ects.order _by(' headline')[0:1].get()

Note, however, that the first of these will raise | ndexEr r or while the second will raise DoesNot Exi st if no

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

objects match the given criteria.

Query Methods That Return New QuerySets

Django provides a range of Quer ySet refinement methods that modify either the types of results returned by
the QuerySet or the way its SQL query is executed. These methods are described in the sections that follow.
Some of the methods take field lookup arguments, which are discussed in detail a bit later on.

filter(**lookup)

Returns a new Quer ySet containing objects that match the given lookup parameters.

exclude(**kwargs)

Returns a new Quer ySet containing objects that do not match the given lookup parameters.

order_by(*fields)

By default, results returned by a Quer ySet are ordered by the ordering tuple given by the or deri ng option in
the model’s metadata (see Appendix B). You can override this for a particular query using the order _by()
method:

>> Entry.objects.filter(pub_date _year=2005).order _by('-pub_date', 'headline')

This result will be ordered by pub_dat e descending, then by headl i ne ascending. The negative sign in front of
" - pub_dat e" indicates descending order. Ascending order is assumed if the - is absent. To order randomly,
use " ?", like so:

>>> Entry. obj ects.order_by('?")

distinct()

Returns a new Quer ySet that uses SELECT DI STI NCT in its SQL query. This eliminates duplicate rows from the
query results.

By default, a Quer ySet will not eliminate duplicate rows. In practice, this is rarely a problem, because simple
queries such as Bl og. obj ects. al | () don’t introduce the possibility of duplicate result rows.

However, if your query spans multiple tables, it's possible to get duplicate results when a QuerySet is
evaluated. That's when you’d use di stinct() .

values(*fields)

Returns a special Quer ySet that evaluates to a list of dictionaries instead of model-instance objects. Each of
those dictionaries represents an object, with the keys corresponding to the attribute names of model objects:

This list contains a Bl og object.
>>> Bl 0g. objects.filter(name__startswi th="Beatles')
[Beat | es Bl og]

This list contains a dictionary.

>>> Bl 0g.objects.filter(name__startswi th="Beatles').val ues()
[{"id: 1, '"nane': 'Beatles Blog', 'tagline': "Al the |atest Beatles news.'}]
val ues() takes optional positional arguments, *fi el ds, which specify field names to which the SELECT should
be limited. If you specify the fields, each dictionary will contain only the field keys/values for the fields you
specify. If you don’t specify the fields, each dictionary will contain a key and value for every field in the
database table:

>>> Bl 0g. obj ect s. val ues()

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

[{"id: 1, 'nane': 'Beatles Blog', 'tagline': '"All the |latest Beatles news.'}],
>>> Bl 0g. obj ects.values('id, 'nane')

[{"id: 1, 'nane': 'Beatles Blog'}]

This method is useful when you know you’re only going to need values from a small number of the available
fields and you won’t need the functionality of a model instance object. It's more efficient to select only the
fields you need to use.

dates(field, kind, order)
Returns a special Quer ySet that evaluates to a list of dat et i ne. dat et i me objects representing all available

dates of a particular kind within the contents of the QuerySet .

The fi el d argument must be the name of a Dat eFi el d or Dat eTi neFi el d of your model. The ki nd argument
must be either "year", "nonth", or "day" . Each dat eti ne. dat et i ne object in the result list is “truncated” to
the given type:

= "year" returns a list of all distinct year values for the field.
= "nont h" returns a list of all distinct year/month values for the field.

= "day" returns a list of all distinct year/month/day values for the field.

or der , which defaults to ' ASC , should be either ' ASC or ' DESC . This specifies how to order the results.

Here are a few examples:

>>> Entry. obj ects. dates(' pub_date', 'year')
[datetinme.datetinme(2005, 1, 1)]

>>> Entry. obj ects.dates(' pub_date', 'nmonth')
[datetinme.datetine(2005, 2, 1), datetine.datetine(2005, 3, 1)]

>>> Entry. obj ects. dates(' pub_date', 'day')
[datetinme. dateti ne(2005, 2, 20), datetine.datetinme(2005, 3, 20)]

>>> Entry. obj ects.dates(' pub_date', 'day', order="DESC)
[datetinme. datetine(2005, 3, 20), datetine.datetinme(2005, 2, 20)]

>>> Entry.objects.filter(headline__contains='Lennon').dates(' pub_date', 'day')
[datetinme. dateti ne(2005, 3, 20)]

select_related()

Returns a Quer ySet that will automatically “follow” foreign key relationships, selecting that additional related-
object data when it executes its query. This is a performance booster that results in (sometimes much) larger
queries but means later use of foreign key relationships won’t require database queries.

The following examples illustrate the difference between plain lookups and sel ect _rel at ed() lookups. Here's
standard lookup:

Hts the database
>>> e = Entry. objects. get (id=5)

Hts the database again to get the related Bl og object.
>>> b = e. bl og

And here’s sel ect _rel at ed lookup:

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

Hts the database.
>>> e = Entry. objects.select_related().get(id=5)

Doesn't hit the database, because e.bl og has been prepopul at ed
in the previous query.
>>> b = e. bl og

sel ect _rel ated() follows foreign keys as far as possible. If you have the following models:

class City(nodel s. Mbdel):
#o...

cl ass Person(nodel s. Model) :
oo,
honmet own = nodel s. For ei gnKey(City)

cl ass Book(nodel s. Model):
...
aut hor = nodel s. For ei gnKey(Per son)

then a call to Book. obj ects. sel ect _rel ated().get (i d=4) will cache the related Per son and the related
Cty:

>>> b = Book. objects.select _related().get(id=4)
>>> p = b. aut hor # Doesn't hit the database.
>>> ¢ = p. honet own # Doesn't hit the database.

>>> b = Book.objects.get(id=4) # No select_related() in this exanple.
>>> p = b. aut hor # Hts the database.
>>> ¢ = p. homet own # Hts the database.

Note that sel ect _rel at ed() does not follow foreign keys that have nul | =Tr ue.

Usually, using sel ect _rel ated() can vastly improve performance because your application can avoid many
database calls. However, in situations with deeply nested sets of relationships, sel ect _rel ated() can
sometimes end up following “too many” relations and can generate queries so large that they end up being
slow.

extra()

Sometimes, the Django query syntax by itself can’t easily express a complex WHERE clause. For these edge
cases, Django provides the extra() QuerySet modifier — a hook for injecting specific clauses into the SQL
generated by a QuerySet .

By definition, these extra lookups may not be portable to different database engines (because you’re explicitly
writing SQL code) and violate the DRY principle, so you should avoid them if possible.

Specify one or more of parans, sel ect , where, or t abl es. None of the arguments is required, but you should
use at least one of them.

The sel ect argument lets you put extra fields in the SELECT clause. It should be a dictionary mapping
attribute names to SQL clauses to use to calculate that attribute:

>>> Entry.objects.extra(select={"is recent': "pub _date > '2006-01-01""})

As a result, each Entry object will have an extra attribute, i s_recent, a Boolean representing whether the
entry’s pub_dat e is greater than January 1, 2006.

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

The next example is more advanced; it does a subquery to give each resulting Bl og object an entry_count
attribute, an integer count of associated Entry objects:

>>> subg = ' SELECT COUNT(*) FROM bl og entry WHERE bl og entry.blog id = blog_blog.id'
>>> Bl 0g. obj ects. extra(sel ect={"entry _count': subq})

(In this particular case, we’re exploiting the fact that the query will already contain the bl og_bl og table in its
FROMclause.)

You can define explicit SQL WHERE clauses — perhaps to perform nonexplicit joins — by using wher e. You can
manually add tables to the SQL FROM clause by using t abl es.

wher e and t abl es both take a list of strings. All wher e parameters are ANDed to any other search criteria:
>>> Entry. objects.extra(where=['id IN (3, 4, 5, 20)'])

The sel ect and wher e parameters described previously may use standard Python database string
placeholders: ' %' to indicate parameters the database engine should automatically quote. The par ans
argument is a list of any extra parameters to be substituted:

>>> Entry. obj ects. extra(where=['headli ne=%"'], paranms=['Lennon'])

Always use par ans instead of embedding values directly into sel ect or wher e because par ans will ensure
values are quoted correctly according to your particular database.

Here’s an example of the wrong way:
Entry. obj ects. extra(where=["headl i ne="9%"'" 9% nane])
Here’s an example of the correct way:

Entry. obj ects. extra(where=["' headl i ne=%"'], parans=[nane])

QuerySet Methods That Do Not Return QuerySets
The following Quer ySet methods evaluate the Quer ySet and return something other than a QuerySet — a

single object, value, and so forth.

get(**lookup)

Returns the object matching the given lookup parameters, which should be in the format described in the “Field
Lookups” section. This raises Asserti onError if more than one object was found.

get () raises a DoesNot Exi st exception if an object wasn’t found for the given parameters. The DoesNot Exi st
exception is an attribute of the model class, for example:

>>> Entry.objects.get(id='foo') # raises Entry.DoesNot Exi st

The DoesNot Exi st exception inherits from dj ango. cor e. excepti ons. Cbj ect DoesNot Exi st , so you can target
multiple DoesNot Exi st exceptions:

>>> from dj ango. core. exceptions inport OCbjectDoesNot Exi st
>>> try:

e Entry. obj ects. get (i d=3)
b Bl 0og. obj ects. get (i d=1)
except nj ect DoesNot Exi st :
print "Either the entry or blog doesn't exist."

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

create(**kwargs)

This is a convenience method for creating an object and saving it all in one step. It lets you compress two
common steps:

>>> p = Person(first_nanme="Bruce", |ast_nane="Springsteen")
>>> p.save()

into a single line:

>>> p = Person. objects.create(first_name="Bruce", |ast_name="Springsteen")

get_or_create(™**kwargs)

This is a convenience method for looking up an object and creating one if it doesn’t exist. It returns a tuple of
(obj ect, created), where obj ect is the retrieved or created object and cr eat ed is a Boolean specifying
whether a new object was created.

This method is meant as a shortcut to boilerplate code and is mostly useful for data-import scripts, for

example:

try:
obj = Person. objects.get(first_name='"John', |ast_nanme='Lennon')

except Person. DoesNot Exi st :
obj = Person(first_nanme='"John', |ast_nane='Lennon', birthday=date(1940, 10, 9))
obj . save()

This pattern gets quite unwieldy as the number of fields in a model increases. The previous example can be
rewritten using get _or_create() like so:

obj, created = Person. objects.get_or_create(

first_name = 'John',
| ast_nane = 'Lennon',
defaults = {'birthday': date(1940, 10, 9)}

Any keyword arguments passed to get _or _create() — except an optional one called def aul t s — will be used
in a get () call. If an object is found, get _or_create() returns a tuple of that object and Fal se. If an object is
not found, get _or _creat e() will instantiate and save a new object, returning a tuple of the new object and
True. The new object will be created according to this algorithm:

defaults = kwargs. pop(' defaults', {})

parans = dict([(k, v) for k, v in kwargs.itens() if ' ' not in k])
par ans. updat e(def aul ts)

obj = self.nodel (**parans)

obj . save()

In English, that means start with any non-' defaul ts' keyword argument that doesn’t contain a double
underscore (which would indicate a nonexact lookup). Then add the contents of def aul t s, overriding any keys
if necessary, and use the result as the keyword arguments to the model class.

If you have a field named def aul t s and want to use it as an exact lookup in get _or_create(), just use
"defaults__exact' like so:

Foo. obj ects. get _or_creat e(

defaults__exact = 'bar',
defaul ts={'defaults': 'baz'}

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

)

Note

As mentioned earlier, get _or_creat e() is mostly useful in scripts that need to parse data and
create new records if existing ones aren’t available. But if you need to use get _or_create() ina
view, please make sure to use it only in POST requests unless you have a good reason not to. GET
requests shouldn’t have any effect on data; use POST whenever a request to a page has a side
effect on your data.

count()

Returns an integer representing the number of objects in the database matching the QuerySet . count () never
raises exceptions. Here’s an example:

Returns the total nunber of entries in the database.
>>> Entry. obj ects. count ()
4

Returns the nunber of entries whose headline contains 'Lennon'
>>> Entry.objects.filter(headline__contains='Lennon').count()
1

count () performs a SELECT COUNT(*) behind the scenes, so you should always use count () rather than
loading all of the records into Python objects and calling | en() on the result.

Depending on which database you're using (e.g., PostgreSQL or MySQL), count () may return a long integer
instead of a normal Python integer. This is an underlying implementation quirk that shouldn’t pose any real-
world problems.

in_bulk(id_list)
Takes a list of primary key values and returns a dictionary mapping each primary key value to an instance of

the object with the given ID, for example:

>>> Bl 0g. obj ects.in_bul k([1])

{1: Beatles Bl og}

>>> Bl 0g. objects.in_bulk([1, 2])
{1. Beatles Blog, 2: Cheddar Tal k}
>>> Bl 0g. obj ects.in_bulk([])

{}

IDs of objects that don’t exist are silently dropped from the result dictionary. If you pass i n_bul k() an empty
list, you’ll get an empty dictionary.

latest(field_name=None)

Returns the latest object in the table, by date, using the fi el d_nane provided as the date field. This example
returns the latest Ent ry in the table, according to the pub_dat e field:

>>> Entry.objects.|atest (' pub_date')

If your model’s Met a specifies get _| at est _by, you can leave off the fi el d_nane argument to | atest () .
Django will use the field specified in get _| at est _by by default.

Like get (), | atest () raises DoesNot Exi st if an object doesn’t exist with the given parameters.

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

Field Lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as keyword arguments to
the QuerySet methods filter(), exclude(), and get() .

Basic lookup keyword arguments take the form fi el d__| ookupt ype=val ue (note the double underscore). For
example:

>>> Entry.objects.filter(pub_date |te='2006-01-01")
translates (roughly) into the following SQL:
SELECT * FROM bl og_entry WHERE pub_date <= '2006-01-01'

If you pass an invalid keyword argument, a lookup function will raise TypeError .

The supported lookup types follow.

exact

Performs an exact match:
>>> Entry. obj ects. get (headl i ne__exact="Man bites dog")

This matches any object with the exact headline “Man bites dog”.

If you don’t provide a lookup type — that is, if your keyword argument doesn’t contain a double underscore —
the lookup type is assumed to be exact .

For example, the following two statements are equivalent:

>>> Bl 0g. obj ects.get(id__exact=14) # Explicit form
>>> Bl 0g. obj ects.get(id=14) # __exact is inplied

This is for convenience, because exact lookups are the common case.
iexact

Performs a case-insensitive exact match:

>>> Bl 0g. obj ects. get (nane__i exact =" beatl es bl og')

This will match ' Beatl es Bl og' , 'beatles blog', ' BeAtlLes BLoG , and so forth.

contains

Performs a case-sensitive containment test:
Entry. obj ects. get (headl i ne__cont ai ns=' Lennon')
This will match the headline ' Today Lennon honored' but not'today |ennon honored' .

SQLite doesn’t support case-sensitive LI KE statements; when using SQLite,” “contains™ " acts like i cont ai ns.

Escaping Percent Signs and Underscores in LIKE Statements

The field lookups that equate to LI KE SQL statements (i exact , cont ai ns, i cont ai ns,
startswith, istartswi th, endswi th, and i endswi t h) will automatically escape the two special
characters used in LI KE statements — the percent sign and the underscore. (In a LI KE statement,

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

the percent sign signifies a multiple-character wildcard and the underscore signifies a single-
character wildcard.)

This means things should work intuitively, so the abstraction doesn’t leak. For example, to
retrieve all the entries that contain a percent sign, just use the percent sign as any other
character:

Entry.objects.filter(headline__contains= %)

Django takes care of the quoting for you. The resulting SQL will look something like this:
SELECT ... WHERE headline LIKE ' % %% ;

The same goes for underscores. Both percentage signs and underscores are handled for you

transparently.

icontains

Performs a case-insensitive containment test:

>>> Entry. obj ects. get (headline__icontai ns='Lennon')

Unlike cont ai ns, i cont ai ns will match ' t oday | ennon honored' .

gt, gte, It, and Ite

These represent greater than, greater than or equal to, less than, and less than or equal to:
>>> Entry.objects.filter(id__gt=4)

>>> Entry.objects.filter(id__|t=15)

>>> Entry.objects.filter(id__gte=0)

These queries return any object with an ID greater than 4, an ID less than 15, and an ID greater than or equal
to 1, respectively.

You'll usually use these on numeric fields. Be careful with character fields since character order isn’t always
what you’'d expect (i.e., the string “4” sorts after the string “10").

in
Filters where a value is on a given list:
Entry.objects.filter(id__in=[1, 3, 4])

This returns all objects with the ID 1, 3, or 4.

startswith

Performs a case-sensitive starts-with:
>>> Entry.objects.filter(headline__startswith="WII")

This will return the headlines “Will he run?” and “Willbur named judge”, but not “Who is Will?” or “will found in
crypt”.

istartswith

Performs a case-insensitive starts-with:

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

>>> Entry.objects.filter(headline__istartswith="wll")

This will return the headlines “Will he run?”, “Willour named judge”, and “will found in crypt”, but not “Who is
Wwill?”

endswith and iendswith
Perform case-sensitive and case-insensitive ends-with:

>>> Entry.objects.filter(headline_ endswith="cats')
>>> Entry.objects.filter(headline__iendswith="cats")

range
Performs an inclusive range check:

>>> start_date = datetine.date(2005, 1, 1)
>>> end_date = datetine.date(2005, 3, 31)
>>> Entry.objects.filter(pub_date range=(start_date, end_date))

You can use r ange anywhere you can use BETVEEN in SQL — for dates, numbers, and even characters.

year, month, and day

For date/datetime fields, perform exact year, month, or day matches:

Year | ookup
>>>Entry. objects.filter(pub_date year=2005)

Month | ookup -- takes integers
>>> Entry.objects.filter(pub_date_ nonth=12)

Day | ookup
>>> Entry.objects.filter(pub_date_ _day=3)

Conbi nation: return all entries on Christmas of any year
>>> Entry.objects.filter(pub_date_ nonth=12, pub_date_day=25)

isnull

Takes either True or Fal se, which correspond to SQL queries of I S NULL and | S NOT NULL, respectively:

>>> Entry.objects.filter(pub_date_ _isnull=True)

__isnull =True vs. __exact =None

There is an important difference between __isnul | =True and __exact =None. __exact =None will
always return an empty result set, because SQL requires that no value is equal to NULL. __i snul |
determines if the field is currently holding the value of NULL without performing a comparison.

search

A Boolean full-text search that takes advantage of full-text indexing. This is like cont ai ns but is significantly
faster due to full-text indexing.

Note this is available only in MySQL and requires direct manipulation of the database to add the full-text index.

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

The pk Lookup Shortcut

For convenience, Django provides a pk lookup type, which stands for “primary_key”.

In the example Bl og model, the primary key is the i d field, so these three statements are equivalent:

>>> Bl 0g. obj ects. get(id__exact=14) # Explicit form
>>> Bl 0g. obj ects.get(id=14) # __exact is inplied
>>> Bl 0g. obj ects. get (pk=14) # pk inplies id__exact

The use of pk isn’t limited to __exact queries — any query term can be combined with pk to perform a query
on the primary key of a model:

Get blogs entries wth id 1, 4, and 7
>>> Bl og.objects.filter(pk__in=[1,4,7])

Get all blog entries with id > 14
>>> Bl og. obj ects.filter(pk__gt=14)

pk lookups also work across joins. For example, these three statements are equivalent:

>>> Entry.objects.filter(blog__id__exact=3) # Explicit form
>>> Entry.objects.filter(blog id=3) # exact is inplied
>>> Entry.objects.filter(blog pk=3) # pk inplies __id__exact

Complex Lookups with Q Objects

Keyword argument queries —infilter() and so on — are ANDed together. If you need to execute more
complex queries (e.g., queries with OR statements), you can use Q objects.

A Qobject (dj ango. db. nodel s. Q) is an object used to encapsulate a collection of keyword arguments. These
keyword arguments are specified as in the “Field Lookups” section.

For example, this Q object encapsulates a single LI KE query:
Q question__startsw th="\Wat")

Q objects can be combined using the & and | operators. When an operator is used on two Q objects, it yields a
new Q object. For example, this statement yields a single Q object that represents the OR of two
"question__startsw th" queries:

Q question__startswith="Wio') | Qquestion__startsw th="\Wat")
This is equivalent to the following SQL WHERE clause:
WHERE question LIKE 'W0% OR question LIKE 'Wat%

You can compose statements of arbitrary complexity by combining Q objects with the & and | operators. You
can also use parenthetical grouping.

Each lookup function that takes keyword arguments (e.g., filter(), excl ude(), get()) can also be passed
one or more Q objects as positional (not-named) arguments. If you provide multiple Q object arguments to a
lookup function, the arguments will be ANDed together, for example:

Pol | . obj ect s. get (
Q question__startsw th="\Wo'),

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

Q pub_dat e=dat e(2005, 5, 2)) | Q pub_dat e=date(2005, 5, 6))

roughly translates into the following SQL:

SELECT * from polls WHERE question LIKE 'Wo0%
AND (pub_date = '2005-05-02' OR pub_date = '2005-05-06")

Lookup functions can mix the use of Q objects and keyword arguments. All arguments provided to a lookup
function (be they keyword arguments or Q objects) are ANDed together. However, if a Q object is provided, it
must precede the definition of any keyword arguments. For example, the following:

Pol | . obj ect s. get (
Q pub_dat e=dat e(2005, 5, 2)) | Q pub_date=date(2005, 5, 6)),
question__startsw th="Wo')

would be a valid query, equivalent to the previous example, but this:

1 NVALI D QUERY
Pol | . obj ect s. get (
question__startsw t h="Wo',
Q pub_dat e=dat e(2005, 5, 2)) | Q pub_dat e=date(2005, 5, 6)))

would not be valid.

You can find some examples online at
http://www.djangoproject.com/documentation/0.96/models/or_lookups/.

Related Objects

When you define a relationship in a model (i.e., a For ei gnKey, OneToOneFi el d, or ManyToManyFi el d),
instances of that model will have a convenient API to access the related object(s).

For example, an Entry object e can get its associated Bl og object by accessing the bl og attribute e. bl og.

Django also creates APl accessors for the “other” side of the relationship — the link from the related model to
the model that defines the relationship. For example, a Bl og object b has access to a list of all related Entry
objects via the entry_set attribute: b.entry_set.all ().

All examples in this section use the sample Bl og, Aut hor , and Ent ry models defined at the top of this page.

Lookups That Span Relationships

Django offers a powerful and intuitive way to “follow” relationships in lookups, taking care of the SQL JO Ns for
you automatically behind the scenes. To span a relationship, just use the field name of related fields across
models, separated by double underscores, until you get to the field you want.

This example retrieves all Ent ry objects with a Bl og whose nane is ' Beatl es Bl og' :
>>> Entry.objects.filter(blog nane__exact='Beatles Bl og')

This spanning can be as deep as you'd like.
It works backward, too. To refer to a “reverse” relationship, just use the lowercase name of the model.

This example retrieves all Bl og objects that have at least one Entry whose headl i ne contains ' Lennon' :

>>> Bl og.objects.filter(entry__headline__contains='Lennon')

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

http://www.djangoproject.com/documentation/0.96/models/or_lookups/

Appendix C: Database APl Reference

Foreign Key Relationships

If a model has a For ei gnKey, instances of that model will have access to the related (foreign) object via a
simple attribute of the model, for example:

e = Entry. objects. get (id=2)
e.blog # Returns the related Bl og object.

You can get and set via a foreign key attribute. As you may expect, changes to the foreign key aren’'t saved to
the database until you call save() , for example:

e = Entry. obj ects. get (i d=2)
e. bl og = sone_bl og
e. save()

If a For ei gnKey field has nul | =Tr ue set (i.e., it allows NULL values), you can assign None to it:

e = Entry. obj ects. get (i d=2)
e. bl og = None
e.save() # "UPDATE blog_entry SET blog_id = NULL ...;"

Forward access to one-to-many relationships is cached the first time the related object is accessed.
Subsequent accesses to the foreign key on the same object instance are cached, for example:

e = Entry. obj ects. get (i d=2)
print e.blog # Hits the database to retrieve the associ ated Bl og.
print e.blog # Doesn't hit the database; uses cached version.

Note that the sel ect _rel ated() QuerySet method recursively prepopulates the cache of all one-to-many
relationships ahead of time:

e = Entry. objects.select_related().get(id=2)
print e.blog # Doesn't hit the database; uses cached version.
print e.blog # Doesn't hit the database; uses cached version.

sel ect _rel ated() is documented in the “QuerySet Methods That Return New QuerySets” section.

“Reverse” Foreign Key Relationships

Foreign key relationships are automatically symmetrical — a reverse relationship is inferred from the presence
of a For ei gnKey pointing to another model.

If a model has a For ei gnKey, instances of the foreign key model will have access to a Manager that returns all
instances of the first model. By default, this Manager is nhamed FOO set , where FOO is the source model name,
lowercased. This Manager returns Quer ySet s, which can be filtered and manipulated as described in the
“Retrieving Objects” section.

Here’s an example:

b = Bl 0og. obj ects. get (i d=1)
b.entry set.all() # Returns all Entry objects related to Bl og.

b.entry _set is a Manager that returns QuerySets.
b.entry set.filter(headline__contains='Lennon')

b.entry_set.count()

You can override the FOO_set name by setting the r el at ed_nane parameter in the For ei gnKey() definition.

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

For example, if the Entry model was altered to bl og = Forei gnKey(Bl og, rel ated_nane='entries'), the
preceding example code would look like this:

b = Bl og. obj ects. get (i d=1)
b.entries.all() # Returns all Entry objects related to Bl og

b.entries is a Manager that returns QuerySets.
b.entries.filter(headline__contains='"Lennon')
b. entries. count ()

You cannot access a reverse For ei gnKey Manager from the class; it must be accessed from an instance:
Bl og. entry _set # Raises AttributeError: "Manager nust be accessed via instance".

In addition to the Quer ySet methods defined in the “Retrieving Objects” section, the For ei gnKey Manager has
these additional methods:

= add(obj 1, obj2, ...): Adds the specified model objects to the related object set, for example:

Bl 0og. obj ects. get (i d=1)
Entry. obj ects. get (i d=234)
b.entry set.add(e) # Associates Entry e with Blog b.

= create(**kwargs) : Creates a new object, saves it, and puts it in the related object set. It returns the
newly created object:

b = Bl 0og. obj ects. get (i d=1)

e b.entry set.create(headline="Hello', body text="H",

pub_dat e=dat et i ne. dat (2005, 1, 1))

No need to call e.save() at this point -- it's already been saved.

This is equivalent to (but much simpler than) the following:

b = Bl 0og. obj ects. get (i d=1)

e = Entry(bl og=b, headline="Hello', body text="H "', pub_date=datetine.date(2005, 1,
1))

e. save()

Note that there’s no need to specify the keyword argument of the model that defines the relationship. In
the preceding example, we don’t pass the parameter bl og to creat e() . Django figures out that the new
Ent ry object’s bl og field should be set to b.

= renove(obj 1, obj2, ...): Removes the specified model objects from the related object set:

Bl 0og. obj ects. get (i d=1)
Entry. obj ects. get (i d=234)
b.entry_set.renove(e) # Disassociates Entry e from Blog b.

In order to prevent database inconsistency, this method only exists on For ei gnKey objects where

nul | =True. If the related field can’t be set to None (NULL), then an object can’t be removed from a
relation without being added to another. In the preceding example, removing e from b. entry_set () is
equivalent to doing e. bl og = None, and because the bl og For ei gnKey doesn’t have nul | =Tr ue, this is
invalid.

= cl ear () : Removes all objects from the related object set:

b = Bl og. obj ects. get (i d=1)

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

b.entry set.clear()

Note this doesn’t delete the related objects — it just disassociates them.

Just like remove(), cl ear () is only available on Forei gnKey™ "s where " nul | =True.

To assign the members of a related set in one fell swoop, just assign to it from any iterable object, for
example:

b = Bl og. obj ects. get (i d=1)
b.entry_set = [el, e2]

If the cl ear () method is available, any pre-existing objects will be removed from the entry_set before all
objects in the iterable (in this case, a list) are added to the set. If the cl ear () method is not available, all
objects in the iterable will be added without removing any existing elements.

Each “reverse” operation described in this section has an immediate effect on the database. Every addition,
creation, and deletion is immediately and automatically saved to the database.

Many-to-Many Relationships

Both ends of a many-to-many relationship get automatic APl access to the other end. The API works just as a
“reverse” one-to-many relationship (described in the previous section).

The only difference is in the attribute naming: the model that defines the ManyToManyFi el d uses the attribute
name of that field itself, whereas the “reverse” model uses the lowercased model name of the original model,
plus ' _set' (just like reverse one-to-many relationships).

An example makes this concept easier to understand:

= Entry. obj ects. get (i d=3)

.authors.all () # Returns all Author objects for this Entry.
.aut hors. count ()

.authors.filter(nanme__contai ns='John')

® ® d @D

a = Aut hor. obj ects. get (i d=5)
.entry set.all() # Returns all Entry objects for this Author.

<))

Like For ei gnKey, ManyToManyFi el d can specify r el at ed_nane. In the preceding example, if the
ManyToManyFi el d in Entry had specified r el at ed_nane="'entri es', then each Aut hor instance would have an
entri es attribute instead of entry_set .

How Are the Backward Relationships Possible?

Other object-relational mappers require you to define relationships on both sides. The Django
developers believe this is a violation of the DRY (Don’t Repeat Yourself) principle, so Django
requires you to define the relationship on only one end. But how is this possible, given that a
model class doesn’t know which other model classes are related to it until those other model
classes are loaded?

The answer lies in the | NSTALLED APPS setting. The first time any model is loaded, Django iterates
over every model in | NSTALLED APPS and creates the backward relationships in memory as
needed. Essentially, one of the functions of | NSTALLED APPS is to tell Django the entire model
domain.

Queries Over Related Objects

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

Queries involving related objects follow the same rules as queries involving normal value fields. When
specifying the value for a query to match, you may use either an object instance itself or the primary key value
for the object.

For example, if you have a Bl og object b with i d=5, the following three queries would be identical:

Entry.objects.filter(blog=b) # Query using object instance
Entry.objects.filter(blog=b.id) # Query using id frominstance
Entry.objects.filter(blog=5) # Query using id directly

Deleting Objects

The delete method, conveniently, is named del et e() . This method immediately deletes the object and has no
return value:

e. del ete()

You can also delete objects in bulk. Every QuerySet has a del et e() method, which deletes all members of
that Quer ySet . For example, this deletes all Ent ry objects with a pub_dat e year of 2005:

Entry.objects.filter(pub_date _year=2005). del ete()

When Django deletes an object, it emulates the behavior of the SQL constraint ON DELETE CASCADE — in other
words, any objects that had foreign keys pointing at the object to be deleted will be deleted along with it, for
example:

b = Bl 0og. obj ects. get (pk=1)
This will delete the Blog and all of its Entry objects.
b. del et e()

Note that del et e() is the only Quer ySet method that is not exposed on a Manager itself. This is a safety
mechanism to prevent you from accidentally requesting Entry. obj ect s. del et e() and deleting all the entries.
If you do want to delete all the objects, then you have to explicitly request a complete query set:

Entry. objects.all().delete()

Extra Instance Methods

In addition to save() and del et e(), a model object might get any or all of the following methods.

get_FOO_display()

For every field that has choi ces set, the object will have a get _FOO di spl ay() method, where FOOis the
name of the field. This method returns the “human-readable” value of the field. For example, in the following
model:

GENDER_CHO CES = (
("M, "Mle"),
("F, 'Female'),
)
cl ass Person(nodel s. Mbdel) :
nane = nodel s. Char Fi el d(max_I| engt h=20)
gender = nodel s. Char Fi el d(max_| engt h=1, choi ces=GENDER_CHO CES)

each Per son instance will have a get _gender _di spl ay() method:

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

Appendix C: Database APl Reference

>>> p = Person(nanme='John', gender='M)
>>> p. save()

>>> p. gender

‘M

>>> p. get _gender _di spl ay()

' Mal e

get_next_by FOO(**kwargs) and get_previous_by FOO(**kwargs)

For every Dat eFi el d and Dat eTi neFi el d that does not have nul | =Tr ue, the object will have

get _next_by FOOQ() and get _previous_by FOJ() methods, where FOO is the name of the field. This returns
the next and previous object with respect to the date field, raising the appropriate DoesNot Exi st exception
when appropriate.

Both methods accept optional keyword arguments, which should be in the format described in the “Field
Lookups” section.

Note that in the case of identical date values, these methods will use the ID as a fallback check. This
guarantees that no records are skipped or duplicated. For a full example, see the lookup APl samples at
http://www.djangoproject.com/documentation/0.96/models/lookup/ .

get_FOO_filename()
For every Fi | eFi el d, the object will have a get _FOO fil enane() method, where FOO is the name of the field.

This returns the full filesystem path to the file, according to your MEDI A_ROOT setting.

Note that | negeFi el d is technically a subclass of Fi | eFi el d, so every model with an | rageFi el d will also get
this method.

get_FOO_url()

For every Fi | eFi el d, the object will have a get _FOO url () method, where FOO is the name of the field. This
returns the full URL to the file, according to your MEDI A_URL setting. If the value is blank, this method returns
an empty string.

get _FOO_size()

For every Fi | eFi el d, the object will have a get _FQOO si ze() method, where FOO is the name of the field. This
returns the size of the file, in bytes. (Behind the scenes, it uses os. pat h. get si ze.)

save_FOO_file(filename, raw_contents)

For every Fi | eFi el d, the object will have a save_FOO fil e() method, where FOO is the name of the field. This
saves the given file to the filesystem, using the given file name. If a file with the given file name already exists,
Django adds an underscore to the end of the file name (but before the extension) until the file name is
available.

get_FOO_height() and get_FOO_width()

For every | nageFi el d, the object will have get _FOO hei ght () and get _FOO wi dt h() methods, where FOOis
the name of the field. This returns the height (or width) of the image, as an integer, in pixels.

Shortcuts

As you develop views, you will discover a number of common idioms in the way you use the database API.
Django encodes some of these idioms as shortcuts that can be used to simplify the process of writing views.
These functions are in the dj ango. short cut s module.

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

http://www.djangoproject.com/documentation/0.96/models/lookup/

Appendix C: Database APl Reference

get_object_or_404()

One common idiom to use get () and raise Ht t p404 if the object doesn’t exist. This idiom is captured by
get _obj ect _or _404() . This function takes a Django model as its first argument and an arbitrary number of
keyword arguments, which it passes to the default manager’s get () function. It raises Ht t p404 if the object
doesn’t exist, for example:

Get the Entry with a primary key of 3
e = get_object_or_404(Entry, pk=3)

When you provide a model to this shortcut function, the default manager is used to execute the underlying
get () query. If you don’t want to use the default manager, or if you want to search a list of related objects,
you can provide get _obj ect _or_404() with a Manager object instead:

Get the author of blog instance e with a nane of 'Fred'
a = get _object_or_404(e.authors, nanme='Fred')

Use a custom nanager 'recent_entries' in the search for an
entry with a primary key of 3
e = get_object_or_404(Entry.recent _entries, pk=3)

get_list_or_404()

get _|i st_or_404 behaves the same way as get _obj ect _or_404(), except that it uses filter() instead of
get () . It raises Ht t p404 if the list is empty.

Falling Back to Raw SQL

If you find yourself needing to write an SQL query that is too complex for Django’s database mapper to
handle, you can fall back into raw SQL statement mode.

The preferred way to do this is by giving your model custom methods or custom manager methods that
execute queries. Although there’s nothing in Django that requires database queries to live in the model layer,
this approach keeps all your data access logic in one place, which is smart from a code organization standpoint.
For instructions, see Appendix B..

Finally, it's important to note that the Django database layer is merely an interface to your database. You can
access your database via other tools, programming languages, or database frameworks — there’s nothing
Django-specific about your database.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/appendixC/[2009.01.07. 10:42:39]

http://www.djangobook.com/license/
http://mediatemple.net/

Appendix D: Generic View Reference

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Appendix D: Generic View Reference

Chapter 9 introduces generic views but leaves out some of the gory details. This appendix describes each
generic view along with all the options each view can take. Be sure to read Chapter 9 before trying to
understand the reference material that follows. You might want to refer back to the Book, Publ i sher, and
Aut hor objects defined in that chapter; the examples that follow use these models.

Common Arguments to Generic Views

Most of these views take a large number of arguments that can change the generic view’s behavior. Many of
these arguments work the same across a large number of views. Table D-1 describes each of these common
arguments; anytime you see one of these arguments in a generic view’s argument list, it will work as described
in the table.

Table D-1. Common Arguments to Generic Views

Argument Description

al l ow_enpty A Boolean specifying whether to display the page if no objects are
available. If this is Fal se and no objects are available, the view will
raise a 404 error instead of displaying an empty page. By default, this
is Fal se.

cont ext _processors A list of additional template-context processors (besides the defaults)
to apply to the view’s template. See Chapter 10 for information on
template context processors.

extra_cont ext A dictionary of values to add to the template context. By default, this
is an empty dictionary. If a value in the dictionary is callable, the
generic view will call it just before rendering the template.

nm net ype The MIME type to use for the resulting document. It defaults to the
value of the DEFAULT_M ME_TYPE setting, which is t ext/ ht m if you
haven’t changed it.

queryset A QuerySet (i.e., something like Aut hor . obj ects. all ()) to read
objects from. See Appendix C for more information about Quer ySet
objects. Most generic views require this argument.

tenpl at e_| oader The template loader to use when loading the template. By default, it's
dj ango. tenpl at e. | oader . See Chapter 10 for information on template
loaders.

tenpl at e_nane The full name of a template to use in rendering the page. This lets you
override the default template name derived from the Quer ySet .

tenpl at e_obj ect _nane The name of the template variable to use in the template context. By
default, this is ' obj ect' . Views that list more than one object (i.e.,
obj ect _| i st views and various objects-for-date views) will append

_l'ist' to the value of this parameter.

“Simple” Generic Views

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Appendix D: Generic View Reference

The module™ ~“django.views.generic.simple™ " contains simple views that handle a couple of common cases:
rendering a template when no view logic is needed and issuing a redirect.

Rendering a Template

View function: dj ango. vi ews. generic.sinple.direct _to_tenplate

This view renders a given template, passing it a {{ parans }} template variable, which is a dictionary of the
parameters captured in the URL.

Example

Given the following URLconf:

from dj ango. conf.urls.defaults inport *
from dj ango. vi ews. generic.sinple inport direct to tenplate

url patterns = patterns('’',

(r'~fool$', direct _to_tenplate, {'tenplate': 'foo_index.htm"'}),
(r'~Moo/ (?P<id>\d+)/$', direct to tenplate, {'tenplate': 'foo_detail.htm'}),

a request to / f oo/ would render the template f oo_i ndex. ht m , and a request to / f oo/ 15/ would render
foo_detail.htm with a context variable {{ parans.id }} thatis set to 15.

Required Arguments

= tenpl at e: The full name of a template to use.

Redirecting to Another URL

View function: dj ango. vi ews. generic.sinple.redirect _to

This view redirects to another URL. The given URL may contain dictionary-style string formatting, which will be
interpolated against the parameters captured in the URL.

If the given URL is None, Django will return an HTTP 410 (“Gone”) message.

Example

This URLconf redirects from / f oo/ <i d>/ to / bar/<i d>/ :

from dj ango. conf.urls.defaults inport *
from dj ango. vi ews. generic.sinple inmport redirect_to

url patterns = patterns('django.views.generic.sinple',
("~oo/(?p<id>\d+)/$', redirect _to, {'url': '/bar/%id)s/'}),

This example returns a “Gone” response for requests to / bar/ :

from dj ango. vi ews. generic.sinple inport redirect _to

url patterns = patterns('django.vi ews.generic.sinple',

(""bar/$', redirect _to, {"url': None}),

Required Arguments

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference

= url : The URL to redirect to, as a string. Or None to return a 410 (“Gone”) HTTP response.

List/Detail Generic Views

The list/detail generic views (in the module dj ango. vi ews. generic.|ist_detail) handle the common case of
displaying a list of items at one view and individual “detail” views of those items at another.

Lists of Objects

View function: dj ango. vi ews. generic.list_detail.object_|ist

Use this view to display a page representing a list of objects.

Example

Given the Aut hor object from Chapter 5, we can use the obj ect _|i st view to show a simple list of all authors
given the following URLconf snippet:

from nysite. books. nodel s inport Author
from dj ango. conf.urls.defaults inport *
from dj ango. vi ews. generic inport |ist_detai

author list _info = {
‘queryset' Aut hor . obj ects. all (),
"all ow empty': True,

url patterns = patterns('’',
(r'authors/$', list detail.object list, author _Ilist_info)

Required Arguments

= queryset : A QuerySet of objects to list (see Table D-1).

Optional Arguments

= pagi nat e_by: An integer specifying how many objects should be displayed per page. If this is given, the
view will paginate objects with pagi nat e_by objects per page. The view will expect either a page query
string parameter (via GET) containing a zero-indexed page number, or a page variable specified in the
URLconf. See the following “Notes on Pagination” section.

Additionally, this view may take any of these common arguments described in Table D-1:

= allow enpty

= context_processors
= extra_context

= i netype

= tenpl ate_| oader

= tenpl ate_nane

= tenpl at e_obj ect _name

Template Name

If t enpl at e_nane isn’t specified, this view will use the template <app_| abel >/ <nodel _nanme>_| i st. htm by
default. Both the application label and the model name are derived from the quer yset parameter. The
application label is the name of the application that the model is defined in, and the model name is the

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference
lowercased version of the name of the model class.

In the previous example using Aut hor . obj ects. al | () as the queryset, the application label would be books
and the model name would be aut hor . This means the default template would be books/ aut hor _|ist. htmni .

Template Context
In addition to extra_cont ext , the template’s context will contain the following:

= obj ect _I|ist: The list of objects. This variable’s name depends on the t enpl at e_obj ect _nane parameter,
which is ' obj ect' by default. If t enpl at e_obj ect _nane is' f 00" , this variable’s name will be foo_Ii st .

= | s_pagi nat ed: A Boolean representing whether the results are paginated. Specifically, this is set to Fal se
if the number of available objects is less than or equal to pagi nat e_by.

If the results are paginated, the context will contain these extra variables:

resul ts_per_page: The number of objects per page. (This is the same as the pagi nat e_by parameter.)
= has_next : A Boolean representing whether there’s a next page.

= has_previ ous: A Boolean representing whether there’s a previous page.

= page: The current page number, as an integer. This is 1-based.

= next : The next page number, as an integer. If there’s no next page, this will still be an integer
representing the theoretical next-page number. This is 1-based.

= previous: The previous page number, as an integer. This is 1-based.
= pages: The total number of pages, as an integer.

= hits: The total number of objects across all pages, not just this page.

A Note on Pagination

If pagi nat e_by is specified, Django will paginate the results. You can specify the page number in
the URL in one of two ways:

= Use the page parameter in the URLconf. For example, this is what your URLconf might look
like:

(r' ~obj ect s/ page(?P<page>[0-9]+)/$', 'object_list', dict(info_dict))

= Pass the page number via the page query-string parameter. For example, a URL would look
like this:

/ obj ect s/ ?page=3

In both cases, page is 1-based, not 0-based, so the first page would be represented as page 1.

Detail Views

View function: dj ango. vi ews. generic. | ist_detail.object_detail

This view provides a “detail” view of a single object.

Example

Continuing the previous obj ect _| i st example, we could add a detail view for a given author by modifying the
URLconf:

from nysite. books. nodel s inport Author
from dj ango. conf.urls.defaults inport *

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference
from dj ango. vi ews. generic inport |ist_detail
author _list_info = {

' queryset' Aut hor . obj ects. all (),
"all ow enmpty': True,

}
aut hor _detail _info = {
"queryset" : Author.objects.all(),
"tenpl at e_obj ect _nane" : "author",
}
url patterns = patterns('’',
(r'authors/$', list detail.object list, author |ist_info),
(r' Maut hors/ (?P<obj ect _id>d+)/$', |ist_detail.object _detail, author_detail _info),

Required Arguments

= queryset : A QuerySet that will be searched for the object (see Table D-1).

and either

= 0bj ect _i d: The value of the primary-key field for the object.

or

= sl ug: The slug of the given object. If you pass this field, then the sl ug_fi el d argument (see the
following section) is also required.

Optional Arguments

= slug field: The name of the field on the object containing the slug. This is required if you are using the
sl ug argument, but it must be absent if you’re using the obj ect _i d argument.

= tenpl ate_nane_fiel d: The name of a field on the object whose value is the template name to use. This
lets you store template names in your data.

In other words, if your object has a field ' t he_t enpl at e’ that contains a string ' f oo. ht ml ', and you set
tenpl ate_nane_fieldto'the_tenplate', then the generic view for this object will use the template
"foo.htm " .

If the template named by t enpl at e_nane_fi el d doesn’t exist, the one named by t enpl at e_nane is used
instead. It's a bit of a brain-bender, but it's useful in some cases.

This view may also take these common arguments (see Table D-1):

= context_processors
= extra_context

= M netype

= tenpl ate_| oader

= tenpl ate_nane

= tenpl ate_obj ect _name
Template Name

If tenpl ate_nane and tenpl at e_nane_fi el d aren’t specified, this view will use the template
<app_| abel >/ <nbdel _nanme>_detai | . ht Ml by default.

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference

Template Context

In addition to extra_cont ext , the template’s context will be as follows:

= obj ect : The object. This variable’s name depends on the t enpl at e_obj ect _nane parameter, which is
' obj ect' by default. If t enpl at e_obj ect _nane is ' f oo’ , this variable’s name will be f oo.

Date-Based Generic Views

Date-based generic views are generally used to provide a set of “archive” pages for dated material. Think
year/month/day archives for a newspaper, or a typical blog archive.

Tip:

By default, these views ignore objects with dates in the future.

This means that if you try to visit an archive page in the future, Django will automatically show a
404 (“Page not found”) error, even if there are objects published that day.

Thus, you can publish postdated objects that don’t appear publicly until their desired publication
date.

However, for different types of date-based objects, this isn’t appropriate (e.g., a calendar of
upcoming events). For these views, setting the al | ow_f ut ur e option to Tr ue will make the future
objects appear (and allow users to visit “future” archive pages).

Archive Index

View function: dj ango. vi ews. generi c. dat e_based. ar chi ve_i ndex

This view provides a top-level index page showing the “latest” (i.e., most recent) objects by date.

Example

Say a typical book publisher wants a page of recently published books. Given some Book object with a
publ i cati on_dat e field, we can use the ar chi ve_i ndex view for this common task:

from nysite. books. nodel s inport Book
from dj ango. conf.urls.defaults inport *
from dj ango. vi ews. generic inport date_based

book _info = {
"queryset” . Book. objects.all (),
"date _field" : "publication_date"

url patterns = patterns('’',
(r' "books/$', date_based. archive_i ndex, book_info),

Required Arguments

= date_field: The name of the Dat eFi el d or Dat eTi neFi el d in the Quer ySet ‘s model that the date-based
archive should use to determine the objects on the page.

= queryset : A QuerySet of objects for which the archive serves.

Optional Arguments

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference

= allow future: A Boolean specifying whether to include “future” objects on this page, as described in the
previous note.

= num | at est : The number of latest objects to send to the template context. By default, it’s 15.

This view may also take these common arguments (see Table D-1):

al | ow_enpty

cont ext _processors

extra_cont ext

m met ype

t enpl at e_| oader

t enpl at e_nane

Template Name

If tenpl at e_nane isn’t specified, this view will use the template <app_| abel >/ <npbdel _name>_archi ve. ht M by
default.

Template Context
In addition to extra_cont ext , the template’s context will be as follows:

= date_list: Alist of dateti ne. dat e objects representing all years that have objects available according to
queryset . These are ordered in reverse.

For example, if you have blog entries from 2003 through 2006, this list will contain four dat eti ne. dat e
objects: one for each of those years.

= | atest: The num | at est objects in the system, in descending order by date_fi el d. For example, if
num | at est is 10, then | at est will be a list of the latest ten objects in queryset .

Year Archives
View function: dj ango. vi ews. generi c. dat e_based. ar chi ve_year

Use this view for yearly archive pages. These pages have a list of months in which objects exists, and they can
optionally display all the objects published in a given year.

Example

Extending the ar chi ve_i ndex example from earlier, we’ll add a way to view all the books published in a given
year:

from nysite. books. nodel s inport Book
from dj ango. conf.urls.defaults inport *
from dj ango. vi ews. generic inport date_based

book info = {
"queryset" . Book. objects.all (),
"date field" : "publication_date"

url patterns = patterns('’',
(r'~books/$', date_based. archive_i ndex, book_ info),
(r' “books/ (?P<year>d{4})/ ?$', date_based. archi ve_year, book_info),

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference

Required Arguments
» date_field: As for archi ve_i ndex (see the previous section).
= queryset: A QuerySet of objects for which the archive serves.

= year : The four-digit year for which the archive serves (as in our example, this is usually taken from a URL
parameter).

Optional Arguments

= nmake_object _|ist: A Boolean specifying whether to retrieve the full list of objects for this year and pass
those to the template. If Tr ue, this list of objects will be made available to the template as obj ect _|i st .
(The name obj ect _| i st may be different; see the information about obj ect _| i st in the following
“Template Context” section.) By default, this is Fal se.

= allow future: A Boolean specifying whether to include “future” objects on this page.

This view may also take these common arguments (see Table D-1):

= allow enpty

= cont ext_processors
= extra_context

= i netype

= tenpl ate_| oader

= tenpl ate_nane

= tenpl ate_obj ect _name

Template Name

If tenpl at e_nane isn’'t specified, this view will use the template
<app_| abel >/ <npdel _name>_ar chi ve_year. ht ml by default.

Template Context
In addition to ext ra_cont ext , the template’s context will be as follows:

= date_list: A list of dateti nme. dat e objects representing all months that have objects available in the
given year, according to queryset , in ascending order.

= year : The given year, as a four-character string.

= object_I|ist: If the nake_obj ect _| i st parameter is Tr ue, this will be set to a list of objects available for
the given year, ordered by the date field. This variable’s name depends on the t enpl at e_obj ect _nane
parameter, which is ' obj ect' by default. If t enpl at e_obj ect _nane is ' f oo’ , this variable’s name will be
foo_list.

If make_obj ect _|ist is Fal se, object _|ist will be passed to the template as an empty list.

Month Archives

View function: dj ango. vi ews. generi c. dat e_based. archi ve_nont h

This view provides monthly archive pages showing all objects for a given month.

Example

Continuing with our example, adding month views should look familiar:

url patterns = patterns('’',

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference

(r'"“books/$', date_based. archive_i ndex, book_info),
(r' “books/ (?P<year>d{4})/ ?$', date based. archive_year, book_info),

(
r' AN ?P<year >d{4})/ (?P<nmont h>[a-z]{3})/$',
dat e_based. ar chi ve_nont h,
book_i nfo

),

Required Arguments
= year : The four-digit year for which the archive serves (a string).
= nont h: The month for which the archive serves, formatted according to the nont h_f or rat argument.
= queryset : A QuerySet of objects for which the archive serves.

» date_field: The name of the Dat eFi el d or Dat eTi neFi el d in the Quer ySet ‘s model that the date-based
archive should use to determine the objects on the page.

Optional Arguments

= nont h_f ormat : A format string that regulates what format the nont h parameter uses. This should be in
the syntax accepted by Python’s tine. strfti me. (See Python’s strftime documentation at
http://www.djangoproject.com/r/python/strftime/.) It's set to "%" by default, which is a three-letter
month abbreviation (i.e., “jan”, “feb”, etc.). To change it to use numbers, use " %' .

= allow future: A Boolean specifying whether to include “future” objects on this page, as described in the
previous note.

This view may also take these common arguments (see Table D-1):

= allow enpty

= context_processors
= extra_context

= i netype

= tenpl ate_| oader

= tenpl ate_nane

= tenpl at e_obj ect _name

Template Name

If tenpl at e_nane isn’'t specified, this view will use the template
<app_| abel >/ <nbdel _nanme>_ar chi ve_nont h. ht ml by default.

Template Context

In addition to extra_cont ext, the template’s context will be as follows:

= nonth: A dateti ne. dat e object representing the given month.

= next_nonth: A datetine. dat e object representing the first day of the next month. If the next month is in
the future, this will be None.
= previous_nonth: A datetine. dat e object representing the first day of the previous month. Unlike

next _nont h, this will never be None.

= object_list: A list of objects available for the given month. This variable’s name depends on the
t enpl at e_obj ect _nanme parameter, which is ' obj ect' by default. If t enpl at e_obj ect _nane is ' f oo’ , this
variable’s name will be foo_|ist.

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

http://www.djangoproject.com/r/python/strftime/

Appendix D: Generic View Reference

Week Archives

View function: dj ango. vi ews. generi c. dat e_based. ar chi ve_week

This view shows all objects in a given week.

Note
3 For the sake of consistency with Python’s built-in date/time handling, Django assumes that the
first day of the week is Sunday.

Example

url patterns = patterns('’',

...

(
r' A(?P<year >d{4})/ (?P<week>d{2})/$',
dat e_based. ar chi ve_week,
book_i nfo

s

Required Arguments
= year : The four-digit year for which the archive serves (a string).
= week: The week of the year for which the archive serves (a string).
= queryset : A QuerySet of objects for which the archive serves.

= date_field: The name of the Dat eFi el d or Dat eTi neFi el d in the Quer ySet ‘s model that the date-based
archive should use to determine the objects on the page.

Optional Arguments

= allow future: A Boolean specifying whether to include “future” objects on this page, as described in the
previous note.

This view may also take these common arguments (see Table D-1):

= allow enpty

cont ext _processors

extra_cont ext

m net ype

t enpl at e_| oader

t enpl at e_nane

t enpl at e_obj ect _nane

Template Name

If tenpl at e_nane isn’'t specified, this view will use the template
<app_| abel >/ <npdel _name>_ar chi ve_week. ht Ml by default.

Template Context
In addition to ext ra_cont ext , the template’s context will be as follows:

= week: A dateti ne. dat e object representing the first day of the given week.

= object_list: A list of objects available for the given week. This variable’s name depends on the
tenpl at e obj ect nane parameter, which is ' obj ect' by default. If t enpl at e obj ect nane is' foo', this

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference

variable’s name will be foo_|ist.

Day Archives

View function: dj ango. vi ews. generi c. dat e_based. ar chi ve_day

This view generates all objects in a given day.

Example

url patterns = patterns('',

...

(
r' AN ?P<year >d{4})/ (?P<nmont h>[a- z] {3})/ (?P<day>d{2})/$',
dat e_based. ar chi ve_day,
book_i nfo

),

Required Arguments

year : The four-digit year for which the archive serves (a string).

nont h: The month for which the archive serves, formatted according to the nont h_f or rat argument.
day: The day for which the archive serves, formatted according to the day_f or mat argument.
queryset : A QuerySet of objects for which the archive serves.

date_fiel d: The name of the Dat eFi el d or Dat eTi neFi el d in the Quer ySet ‘s model that the date-based
archive should use to determine the objects on the page.

Optional Arguments

nont h_f or mat : A format string that regulates what format the nont h parameter uses. See the detailed
explanation in the “Month Archives” section, above.

day_f ormat : Like nont h_f or mat , but for the day parameter. It defaults to "%d" (the day of the month as
a decimal number, 01-31).

al | ow_future: A Boolean specifying whether to include “future” objects on this page, as described in the
previous note.

This view may also take these common arguments (see Table D-1):

al |l ow_enpty

cont ext _processors
ext ra_cont ext

m et ype

t enpl at e_| oader

t enpl at e_nane

t enpl at e_obj ect _nane

Template Name

If t enpl at e_nane isn’t specified, this view will use the template

<app_| abel >/ <npdel _nanme>_ar chi ve_day. ht M by default.

Template Context

In addition to ext ra_cont ext, the template’s context will be as follows:

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference

= day: A dateti ne. dat e object representing the given day.

= next _day: A datetine. dat e object representing the next day. If the next day is in the future, this will be
None.

= previous_day: A datetine. dat e object representing the given day. Unlike next _day, this will never be
None.

= obj ect_I|ist: A list of objects available for the given day. This variable’s nhame depends on the
t enpl at e_obj ect _nane parameter, which is ' obj ect' by default. If t enpl at e_obj ect _nane is' foo' , this
variable’s name will be foo_|ist.

Archive for Today

The dj ango. vi ews. generi c. dat e_based. ar chi ve_t oday view shows all objects for today. This is exactly the
same as ar chi ve_day, except the year /nont h/day arguments are not used, and today’s date is used instead.

Example

url patterns = patterns('’',
#o...
(r' “books/today/$', date based. archive_today, book info),

Date-Based Detail Pages

View function: dj ango. vi ews. generi c. dat e_based. obj ect _det ai |

Use this view for a page representing an individual object.

This has a different URL from the obj ect _det ai | view; the obj ect _detail view uses URLs like
/entries/<slug>/, while this one uses URLs like / entri es/ 2006/ aug/ 27/ <sl ug>/ .

Note

If you're using date-based detail pages with slugs in the URLs, you probably also want to use the
uni que_f or _dat e option on the slug field to validate that slugs aren’t duplicated in a single day.
See Appendix B for details on uni que_f or _dat e.

Example

This one differs (slightly) from all the other date-based examples in that we need to provide either an object
ID or a slug so that Django can look up the object in question.

Since the object we’re using doesn’t have a slug field, we’ll use ID-based URLs. It’s considered a best practice
to use a slug field, but in the interest of simplicity we’ll let it go.

url patterns = patterns('’',

oo,

(
r' ~(?P<year>d{4})/ (?P<nmont h>[a- z] {3})/ (?P<day>d{2})/ (?P<obj ect _id>[w-]1+)/$",
dat e_based. obj ect _det ai |
book_i nfo

15

Required Arguments

= year : The object’s four-digit year (a string).

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference

= nont h: The object’s month, formatted according to the nont h_f or mat argument.
= day: The object’s day, formatted according to the day_f or mat argument.
= queryset : A QuerySet that contains the object.

= date_field: The name of the Dat eFi el d or Dat eTi neFi el d in the Quer ySet ‘s model that the generic
view should use to look up the object according to year, nont h, and day.

You’'ll also need either:

= obj ect_id: The value of the primary-key field for the object.

or:

= sl ug: The slug of the given object. If you pass this field, then the sl ug_fi el d argument (described in the
following section) is also required.

Optional Arguments
= allow future: A Boolean specifying whether to include “future” objects on this page, as described in the
previous note.

= day_format : Like nont h_f or mat , but for the day parameter. It defaults to " %" (the day of the month as
a decimal number, 01-31).

= nont h_format : A format string that regulates what format the nont h parameter uses. See the detailed
explanation in the “Month Archives” section, above.

= slug field: The name of the field on the object containing the slug. This is required if you are using the
sl ug argument, but it must be absent if you’re using the obj ect _i d argument.

= tenpl ate_nane_fiel d: The name of a field on the object whose value is the template name to use. This
lets you store template names in the data. In other words, if your object has a field ' t he_t enpl ate' that
contains a string ' foo. html' , and you set tenpl ate_nane_field to'the_tenplate', then the generic
view for this object will use the template ' f oo. htm ' .

This view may also take these common arguments (see Table D-1):

= context_processors
= extra_context

= i netype

= tenpl ate_| oader

= tenpl ate_nane

= tenpl at e_obj ect _name

Template Name

If tenpl at e_nane and tenpl at e_nane_fi el d aren’t specified, this view will use the template
<app_| abel >/ <npbdel _name>_detai |l . ht Ml by default.

Template Context
In addition to ext ra_cont ext , the template’s context will be as follows:

= 0bj ect : The object. This variable’s name depends on the t enpl at e_obj ect _nane parameter, which is
'obj ect' by default. If t enpl at e_obj ect _nane is ' f oo’ , this variable’s name will be f oo.

Create/Update/Delete Generic Views

The dj ango. vi ews. generi c. cr eat e_updat e module contains a set of functions for creating, editing, and
deleting objects.

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference

Note

These views may change slightly when Django’s revised form architecture (currently under
development as dj ango. newf or ns) is finalized.

These views all present forms if accessed with GET and perform the requested action (create/update/delete) if
accessed via POST.

These views all have a very coarse idea of security. Although they take a | ogi n_r equi r ed attribute, which if
given will restrict access to logged-in users, that's as far as it goes. They won’t, for example, check that the
user editing an object is the same user who created it, nor will they validate any sort of permissions.

Much of the time, however, those features can be accomplished by writing a small wrapper around the generic
view; see “Extending Generic Views” in Chapter 9.

Create Object View

View function: dj ango. vi ews. generi c. creat e_updat e. cr eat e_obj ect

This view displays a form for creating an object. When the form is submitted, this view redisplays the form
with validation errors (if there are any) or saves the object.

Example

If we wanted to allow users to create new books in the database, we could do something like this:
from nysite. books. nodel s inport Book

from dj ango. conf.urls.defaults inport *

from dj ango. vi ews. generic inport date_ based

book _info = {'nodel' : Book}

url patterns = patterns('’',
(r'“books/create/$', create_update.create_object, book_info),

Required Arguments

= nodel : The Django model of the object that the form will create.

Note

Notice that this view takes the model to be created, not a QuerySet (as all the list/detail/date-
based views presented previously do).

Optional Arguments

= post_save_redirect : A URL to which the view will redirect after saving the object. By default, it's
obj ect.get _absolute_url ().

post _save_redirect : May contain dictionary string formatting, which will be interpolated against the
object’s field attributes. For example, you could use post _save_redirect="/pol | s/ %slug)s/".

= | ogin_required: A Boolean that designates whether a user must be logged in, in order to see the page
and save changes. This hooks into the Django authentication system. By default, this is Fal se.

If this is True, and a non-logged-in user attempts to visit this page or save the form, Django will redirect
the request to / account s/ | ogi n/ .

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

Appendix D: Generic View Reference

This view may also take these common arguments (see Table D-1):

= context_processors
= extra_context
= tenpl ate_| oader

= tenpl ate_nane

Template Name

If tenpl at e_nane isn’t specified, this view will use the template <app_| abel >/ <npbdel _name>_form htm by
default.

Template Context
In addition to ext ra_cont ext , the template’s context will be as follows:

= fornr A For MW apper instance representing the form for editing the object. This lets you refer to form
fields easily in the template system — for example, if the model has two fields, nane and addr ess:

<form action= net hod="post " >

<p><| abel for="id_nane">Nane: </|abel> {{ formnane }}</p>

<p><l| abel for="id address">Address: </l abel> {{ form address }}</p>
</fornp

Note that f or mis an oldforms FormWrapper, which is not covered in this book. See
http://www.djangoproject.com/documentation/0.96/forms/ for details.

Update Object View

View function: dj ango. vi ews. generi c. cr eat e_updat e. updat e_obj ect

This view is almost identical to the create object view. However, this one allows the editing of an existing
object instead of the creation of a new one.

Example

Following the previous example, we could provide an edit interface for a single book with this URLconf snippet:
from nysite. books. nodel s i nport Book

from dj ango. conf.urls.defaults inport *
from dj ango. vi ews. generic. inport date_based

book_info = {'nodel' : Book}

url patterns = patterns('’',
(r'~books/create/$', create update.create object, book_ info),

(
r' “"books/ edi t/ (?P<obj ect i d>d+)/$',
creat e_updat e. updat e_obj ect,
book_i nfo

) ’

Required Arguments

= nodel : The Django model to edit. Again, this is the actual model itself, not a QuerySet .

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

http://www.djangoproject.com/documentation/0.96/forms/

Appendix D: Generic View Reference
And either:

= obj ect_id: The value of the primary-key field for the object.

or:

= sl ug: The slug of the given object. If you pass this field, then the sl ug_fi el d argument (below) is also
required.

Optional Arguments

= slug_field: The name of the field on the object containing the slug. This is required if you are using the
sl ug argument, but it must be absent if you’re using the obj ect _i d argument.

Additionally, this view takes all same optional arguments as the creation view, plus the t enpl at e_obj ect _nane
common argument from Table D-1.

Template Name

This view uses the same default template name (<app_| abel >/ <nodel _nane>_f orm ht ml) as the creation
view.

Template Context

In addition to extra_cont ext , the template’s context will be as follows:

= fornr A For MW apper instance representing the form for editing the object. See the “Create Object View”
section for more information about this value.

= 0bj ect : The original object being edited (this variable may be named differently if you’ve provided the
t enpl at e_obj ect _nane argument).

Delete Object View

View function: dj ango. vi ews. generi c. creat e_updat e. del et e_obj ect
This view is very similar to the other two create/edit views. This view, however, allows deletion of objects.

If this view is fetched with GET, it will display a confirmation page (i.e., “Do you really want to delete this
object?”). If the view is submitted with POST, the object will be deleted without confirmation.

All the arguments are the same as for the update object view, as is the context; the template name for this
view is <app_| abel >/ <nodel _nane>_confirmdel ete. htm .

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/appendixD/[2009.01.07. 10:42:53]

http://www.djangobook.com/license/
http://mediatemple.net/

Appendix E: Settings

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Appendix E: Settings

Your Django settings file contains all the configuration of your Django installation. This appendix explains how
settings work and which settings are available.

Note

As Django grows, it’s occasionally necessary to add or (rarely) change settings. You should always
check the online settings documentation at
http://www.djangoproject.com/documentation/0.96/settings/ for the latest information.

What’s a Settings File?

A settings file is just a Python module with module-level variables.

Here are a couple of example settings:

DEBUG = Fal se
DEFAULT _FROM EMAI L = ' webrast er @xanpl e. coni
TEMPLATE DIRS = ('/hone/tenpl ates/ m ke', '/hone/tenpl ates/john')

Because a settings file is a Python module, the following apply:
= It must be valid Python code; syntax errors aren’t allowed.

= It can assign settings dynamically using normal Python syntax, for example:
MY_SETTING = [str(i) for i in range(30)]

= It can import values from other settings files.

Default Settings

A Django settings file doesn’t have to define any settings if it doesn’t need to. Each setting has a sensible
default value. These defaults live in the file dj ango/ conf/ gl obal _setti ngs. py.

Here’s the algorithm Django uses in compiling settings:

= Load settings from gl obal _settings. py.

= Load settings from the specified settings file, overriding the global settings as necessary.
Note that a settings file should not import from gl obal _setti ngs, because that’s redundant.

Seeing Which Settings You’ve Changed

There’s an easy way to view which of your settings deviate from the default settings. The command
manage. py diffsettings displays differences between the current settings file and Django’s default settings.

nmanage. py is described in more detail in Appendix G.

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

http://www.djangobook.com/
http://www.djangobook.com/en/1.0/appendixF/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257
http://www.djangoproject.com/documentation/0.96/settings/

Appendix E: Settings

Using Settings in Python Code

In your Django applications, use settings by importing the object dj ango. conf . setti ngs, for example:
from dj ango. conf inport settings

i f settings. DEBUG
Do sonet hing

Note that dj ango. conf. settings isn't a module — it’s an object. So importing individual settings is not
possible:

from dj ango. conf. settings inmport DEBUG # This won't work.

Also note that your code should not import from either gl obal _settings or your own settings file.
dj ango. conf. setti ngs abstracts the concepts of default settings and site-specific settings; it presents a single
interface. It also decouples the code that uses settings from the location of your settings.

Altering Settings at Runtime

You shouldn’t alter settings in your applications at runtime. For example, don’t do this in a view:
from dj ango. conf inport settings
settings. DEBUG = True # Don't do this!

The only place you should assign to setti ngs is in a settings file.

Security

Because a settings file contains sensitive information, such as the database password, you should make every
attempt to limit access to it. For example, change its file permissions so that only you and your Web server’s
user can read it. This is especially important in a shared-hosting environment.

Creating Your Own Settings

There’s nothing stopping you from creating your own settings, for your own Django applications. Just follow
these conventions:

= Use all uppercase for setting names.

= For settings that are sequences, use tuples instead of lists. Settings should be considered immutable and
shouldn’t be changed once they’re defined. Using tuples mirrors these semantics.

= Don’t reinvent an already existing setting.

Designating the Settings: DJANGO_SETTINGS_MODULE

When you use Django, you have to tell it which settings you're using. Do this by using the environment
variable DJANGO _SETTI NGS_MODULE.

The value of DJANGO _SETTI NGS_MODULE should be in Python path syntax (e.g., nysite. settings). Note that
the settings module should be on the Python import search path (PYTHONPATH).

Tip:

A good guide to PYTHONPATH can be found at
http://diveintopython.org/getting_to_know_python/everything_is_an_object.html.

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

http://diveintopython.org/getting_to_know_python/everything_is_an_object.html

Appendix E: Settings

The django-admin.py Utility

When using dj ango- adni n. py (see Appendix G), you can either set the environment variable once or explicitly
pass in the settings module each time you run the utility.

Here’s an example using the Unix Bash shell:

export DJANGO SETTI NGS_MODULE=nysite. settings
dj ango- admi n. py runserver

Here’s an example using the Windows shell:

set DJANGO SETTI NGS_MODULE=nysite.settings
dj ango- admi n. py runserver

Use the - - setti ngs command-line argument to specify the settings manually:
dj ango- admi n. py runserver --settings=nysite.settings

The manage. py utility created by st art proj ect as part of the project skeleton sets DJANGO_SETTI NGS_MODULE
automatically; see Appendix G for more about nanage. py.

On the Server (mod_python)

In your live server environment, you’ll need to tell Apache/mod_python which settings file to use. Do that with
Set Env :

<Location "/nysite/">
Set Handl er pyt hon- program
Pyt honHandl er dj ango. cor e. handl er s. nodpyt hon
Set Env. DJANGO_SETTI NGS_MODULE nysite. settings
</ Locati on>

For more information, read the Django mod_python documentation online at
http://www.djangoproject.com/documentation/0.96/modpython/.

Using Settings Without Setting DJANGO_SETTINGS_MODULE

In some cases, you might want to bypass the DJANGO_SETTI NGS_MODULE environment variable. For example, if
you’re using the template system by itself, you likely don’t want to have to set up an environment variable
pointing to a settings module.

In these cases, you can configure Django’s settings manually. Do this by calling
dj ango. conf. settings. configure(). Here's an example:

from dj ango. conf inport settings

settings. configure(
DEBUG = Tr ue,
TEMPLATE_DEBUG = Tr ue,
TEMPLATE DI RS = |
"/ hone/ web- apps/ nyapp' ,
'/ hone/ web- apps/ base' ,

Pass confi gure() as many keyword arguments as you’d like, with each keyword argument representing a

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

http://www.djangoproject.com/documentation/0.96/modpython/

Appendix E: Settings

setting and its value. Each argument name should be all uppercase, with the same name as the settings
described earlier. If a particular setting is not passed to confi gure() and is needed at some later point,
Django will use the default setting value.

Configuring Django in this fashion is mostly necessary — and, indeed, recommended — when you’re using a
piece of the framework inside a larger application.

Consequently, when configured via setti ngs. confi gure(), Django will not make any modifications to the
process environment variables. (See the explanation of TI ME_ZONE later in this appendix for why this would
normally occur.) It’'s assumed that you’re already in full control of your environment in these cases.

Custom Default Settings

If you’d like default values to come from somewhere other than dj ango. conf . gl obal _setti ngs, you can pass
in a module or class that provides the default settings as the def aul t _setti ngs argument (or as the first
positional argument) in the call to confi gure() .

In this example, default settings are taken from nyapp_def aul t s, and the DEBUG setting is set to Tr ue,
regardless of its value in myapp_defaul ts:

from dj ango. conf inport settings
from nyapp inport nyapp_defaults

settings. configure(default_settings=nmyapp_defaults, DEBUG=True)
The following example, which uses nyapp_def aul t s as a positional argument, is equivalent:
settings. configure(nmyapp_defaults, DEBUG = True)

Normally, you will not need to override the defaults in this fashion. The Django defaults are sufficiently tame
that you can safely use them. Be aware that if you do pass in a new default module, it entirely replaces the
Django defaults, so you must specify a value for every possible setting that might be used in that code you are
importing. Check in dj ango. conf. settings. gl obal _settings for the full list.

Either configure() or DJANGO_SETTINGS_MODULE Is Required

If you’re not setting the DJANGO_SETTI NGS_MODULE environment variable, you must call confi gure() at some
point before using any code that reads settings.

If you don’t set DJANGO_SETTI NGS_MODULE and don’t call confi gure() , Django will raise an Envi r onnent Err or
exception the first time a setting is accessed.

If you set DJANGO_SETTI NGS_MODULE, access settings values somehow, and then call confi gure(), Django will
raise an Envi ronnent Err or stating that settings have already been configured.

Also, it’s an error to call confi gure() more than once, or to call confi gure() after any setting has been
accessed.

It boils down to this: use exactly one of either confi gure() or DJANGO _SETTI NGS_MODULE. Not both, and not
neither.

Available Settings

The following sections consist of a full list of all available settings, in alphabetical order, and their default
values.

ABSOLUTE_URL_OVERRIDES

Default: {} (empty dictionary)

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

Appendix E: Settings

This is a dictionary mapping "app_| abel . nodel _nane" strings to functions that take a model object and return
its URL. This is a way of overriding get _absol ute_url () methods on a per-installation basis. Here’s an
example:

ABSOLUTE_URL_OVERRI DES = {
‘bl ogs. webl og' : | anbda o: "/blogs/%/" % o. sl ug,
"news.story': lanbda o: "/stories/ %/ %/" % (0.pub_year, o.slug),

Note that the model name used in this setting should be all lowercase, regardless of the case of the actual
model class name.

ADMIN_FOR

Default: () (empty list)

This setting is used for admin site settings modules. It should be a tuple of settings modules (in the format
' foo. bar . baz') for which this site is an admin.

The admin site uses this in its automatically introspected documentation of models, views, and template tags.

ADMIN_MEDIA_PREFIX

Default: ' / nedi a/*

This setting is the URL prefix for admin media: CSS, JavaScript, and images. Make sure to use a trailing slash.

ADMINS

Default: () (empty tuple)

This is a tuple that lists people who get code error notifications. When DEBUG=Fal se and a view raises an
exception, Django will email these people with the full exception information. Each member of the tuple should
be a tuple of (Full name, e-mail address), for example:

(("John', 'john@xanple.com), ('Mary', 'nmary@xanple.com))

Note that Django will email all of these people whenever an error happens.

ALLOWED_INCLUDE_ROOTS

Default: () (empty tuple)

This is a tuple of strings representing allowed prefixes for the { % ssi % template tag. This is a security
measure, so that template authors can’t access files that they shouldn’t be accessing.

For example, if ALLOAED_| NCLUDE_ROOTS is (' / honme/ html ", ' /var/ww), then

{% ssi /hone/htm /foo.txt % would work, but {% ssi /etc/passwd % wouldn’t.

APPEND_SLASH

Default: True

This setting indicates whether to append trailing slashes to URLs. This is used only if CormonM ddl ewar e is
installed (see Chapter 15). See also PREPEND WA\

CACHE_BACKEND

Default: 'sinple://"

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

Appendix E: Settings

This is the cache back-end to use (see Chapter 13).

CACHE_MIDDLEWARE_KEY_PREFIX

Default: ' ' (empty string)

This is the cache key prefix that the cache middleware should use (see Chapter 13).

DATABASE_ENGINE
Default: ' ' (empty string)
This setting indicates which database back-end to use: ' post gresql _psycopg2' , ' postgresql', ' nmysql"',

"nmysqgl _old" or'sqglite3'.

DATABASE_HOST

Default: ' ' (empty string)

This setting indicates which host to use when connecting to the database. An empty string means | ocal host .
This is not used with SQLite.

If this value starts with a forward slash (' /') and you’re using MySQL, MySQL will connect via a Unix socket to
the specified socket:

DATABASE_HOST = '/var/run/ nysql"'

If you're using MySQL and this value doesn’t start with a forward slash, then this value is assumed to be the
host.

DATABASE_NAME

Default: ' ' (empty string)

This is the name of the database to use. For SQLite, it's the full path to the database file.

DATABASE_OPTIONS

Default: {} (empty dictionary)

This is extra parameters to use when connecting to the database. Consult the back-end module’s document for
available keywords.

DATABASE_PASSWORD

Default: ' ' (empty string)

This setting is the password to use when connecting to the database. It is not used with SQLite.

DATABASE_PORT

Default: ' ' (empty string)

This is the port to use when connecting to the database. An empty string means the default port. It is not used
with SQLite.

DATABASE_USER

Default: ' ' (empty string)

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

Appendix E: Settings

This setting is the username to use when connecting to the database. It is not used with SQLite.

DATE_FORMAT

Default: "N j, Y' (e.g., Feb. 4, 2003)

This is the default formatting to use for date fields on Django admin change-list pages — and, possibly, by
other parts of the system. It accepts the same format as the now tag (see Appendix F, Table F-2).

See also DATETI ME_FORVAT, Tl ME_FORNVAT, YEAR_MONTH_FORVAT, and MONTH_DAY_FORVAT.

DATETIME_FORMAT

Default: "N j, Y, P (e.g., Feb. 4, 2003, 4 p.m)

This is the default formatting to use for datetime fields on Django admin change-list pages — and, possibly, by
other parts of the system. It accepts the same format as the now tag (see Appendix F, Table F-2).

See also DATE_FORVAT, DATETI ME_FORVAT, Tl ME_FORVAT, YEAR_MONTH_FORVAT, and MONTH_DAY_FORVAT.

DEBUG

Default: Fal se
This setting is a Boolean that turns debug mode on and off.

If you define custom settings, dj ango/ vi ews/ debug. py has a H DDEN_SETTI NGS regular expression that will
hide from the DEBUG view anything that contains ' SECRET, PASSWORD, or PROFANI Tl ES' . This allows untrusted
users to be able to give backtraces without seeing sensitive (or offensive) settings.

Still, note that there are always going to be sections of your debug output that are inappropriate for public
consumption. File paths, configuration options, and the like all give attackers extra information about your
server. Never deploy a site with DEBUG turned on.

DEFAULT_CHARSET

Default: ' utf- 8'

This is the default charset to use for all Ht t pResponse objects, if a MIME type isn’t manually specified. It is
used with DEFAULT_CONTENT_TYPE to construct the Cont ent - Type header. See Appendix H for more about
Ht t pResponse objects.

DEFAULT_CONTENT_TYPE

Default: "text/htm"’

This is the default content type to use for all Ht t pResponse objects, if a MIME type isn’t manually specified. It
is used with DEFAULT_CHARSET to construct the Cont ent - Type header. See Appendix H for more about
Ht t pResponse objects.

DEFAULT_FROM_EMAIL

Default: ' webnast er @ ocal host'

This is the default email address to use for various automated correspondence from the site manager(s).

DISALLOWED_USER_AGENTS

Default: () (empty tuple)

This is a list of compiled regular expression objects representing User-Agent strings that are not allowed to

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

Appendix E: Settings

visit any page, systemwide. Use this for bad robots/crawlers. This is used only if ConmonM ddl ewar e is installed
(see Chapter 15).

EMAIL_HOST

Default: ' | ocal host'

This is the host to use for sending email. See also EMAI L_PORT.

EMAIL_HOST_PASSWORD

Default: ' ' (empty string)

This is the password to use for the SMTP server defined in EMAI L_HOST. This setting is used in conjunction with
EMAI L_HOST_USER when authenticating to the SMTP server. If either of these settings is empty, Django won’t
attempt authentication.

See also EMVAI L_HOST_USER.

EMAIL_HOST_USER
Default: ' ' (empty string)
This is the username to use for the SMTP server defined in EMAI L_HOST. If it's empty, Django won’t attempt

authentication. See also EMAI L_HOST_PASSWORD.

EMAIL_PORT

Default: 25

This is the port to use for the SMTP server defined in EMAI L_HOST.

EMAIL_SUBJECT_PREFIX

Default: ' [Dj ango]

This is the subject-line prefix for email messages sent with dj ango. core. mai | . mai | _admi ns or
dj ango. core. nai | . mai | _nmanagers. You'll probably want to include the trailing space.

FIXTURE_DIRS

Default: () (empty tuple)

This is a list of locations of the fixture data files, in search order. Note that these paths should use Unix-style
forward slashes, even on Windows. It is used by Django’s testing framework, which is covered online at
http://www.djangoproject.com/documentation/0.96/testing/.

IGNORABLE_404_ENDS

Default: ("mail.pl', "mailformpl', "mail.cgi', "mailformcgi', 'favicon.ico', '.php")

See also | GNORABLE_404_STARTS and Error reporting via e-nmail .

IGNORABLE_404 STARTS
Default: (' /cgi-bin/', "/_vti_bin'", "/_vti_inf")

This is a tuple of strings that specify beginnings of URLs that should be ignored by the 404 emailer. See also
SEND BROKEN LI NK_EMAI LS and | GNORABLE_404_ENDS.

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

http://www.djangoproject.com/documentation/0.96/testing/

Appendix E: Settings
INSTALLED_APPS

Default: () (empty tuple)

A tuple of strings designating all applications that are enabled in this Django installation. Each string should be
a full Python path to a Python package that contains a Django application. See Chapter 5 for more about
applications.

INTERNAL_IPS
Default: () (empty tuple)
A tuple of IP addresses, as strings, that

= See debug comments, when DEBUG is Tr ue

= Receive X headers if the XVi ewM ddl ewar e is installed (see Chapter 15)

JING_PATH

Default: ' /usr/bin/jing'

This is the path to the Jing executable. Jing is a RELAX NG validator, and Django uses it to validate each
XMLFi el d in your models. See http://www.thaiopensource.com/relaxng/jing.html.

LANGUAGE_CODE

Default: ' en- us'

This is a string representing the language code for this installation. This should be in standard language format
— for example, U.S. English is "en- us" . See Chapter 18.

LANGUAGES

Default: A tuple of all available languages. This list is continually growing and any copy included here would
inevitably become rapidly out of date. You can see the current list of translated languages by looking in
dj ango/ conf/ gl obal _setti ngs. py.

The list is a tuple of two-tuples in the format (language code, language name) — for example,
("ja', '"Japanese') . This specifies which languages are available for language selection. See Chapter 18 for
more on language selection.

Generally, the default value should suffice. Only set this setting if you want to restrict language selection to a
subset of the Django-provided languages.

If you define a custom LANGUAGES setting, it’'s OK to mark the languages as translation strings, but you should
never import dj ango. util s.transl ati on from within your settings file, because that module in itself depends
on the settings, and that would cause a circular import.

The solution is to use a “dummy” gett ext () function. Here’s a sample settings file:
gettext = lanbda s: s
LANGUAGES = (

('de', gettext('German')),
("en', gettext('English')),

With this arrangement, nake- messages. py will still find and mark these strings for translation, but the
translation won't happen at runtime — so you’ll have to remember to wrap the languages in the real
gettext () in any code that uses LANGUAGES at runtime.

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

http://www.thaiopensource.com/relaxng/jing.html

Appendix E: Settings

MANAGERS

Default: () (empty tuple)
This tuple is in the same format as ADM NS that specifies who should get broken-link notifications when

SEND_BROKEN_LI NK_ENAI LS=Tr ue.

MEDIA_ROOT

Default: ' ' (empty string)
This is an absolute path to the directory that holds media for this installation (e.g.,

"/ horre/ medi a/ nedi a. | awr ence. com "). See also VEDI A_URL.

MEDIA_URL

Default: ' ' (empty string)
This URL handles the media served from MEDI A ROOT (e.g., "http://media.| aw ence. coni).
Note that this should have a trailing slash if it has a path component:

= Correct: "http://ww. exanpl e. conf static/"

= Incorrect: "http://ww. exanpl e. conf static"

MIDDLEWARE_CLASSES

Default:

("django. contri b. sessi ons. m ddl ewar e. Sessi onM ddl ewar e",
"dj ango. contri b. aut h. m ddl ewar e. Aut henti cati onM ddl ewar e",
"dj ango. m ddl ewar e. conmon. CormonM ddl ewar e",

"dj ango. nm ddl ewar e. doc. XVi ewM dd| ewar e")

This is a tuple of middleware classes to use. See Chapter 15.

MONTH_DAY_FORMAT

Default: ' F j'

This is the default formatting to use for date fields on Django admin change-list pages — and, possibly, by
other parts of the system — in cases when only the month and day are displayed. It accepts the same format
as the now tag (see Appendix F, Table F-2).

For example, when a Django admin change-list page is being filtered by a date, the header for a given day
displays the day and month. Different locales have different formats. For example, U.S. English would have
“January 1,” whereas Spanish might have “1 Enero.”

See also DATE_FORVAT, DATETI ME_FORMAT, Tl ME_FORMAT, and YEAR MONTH_FORVAT.

PREPEND_WWW

Default: Fal se

This setting indicates whether to prepend the “www.” subdomain to URLs that don’t have it. This is used only if
CommonM ddl ewar e is installed (see the Chapter 15). See also APPEND_SLASH.

PROFANITIES_LIST

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

Appendix E: Settings

This is a tuple of profanities, as strings, that will trigger a validation error when the hasNoPr of aniti es
validator is called.

We don't list the default values here, because that might bring the MPAA ratings board down on our heads. To
view the default values, see the file dj ango/ conf/ gl obal _settings. py.

ROOT_URLCONF

Default: Not defined

This is a string representing the full Python import path to your root URLconf (e.g., "nydj angoapps. url s").
See Chapter 3.

SECRET_KEY

Default: (Generated automatically when you start a project)

This is a secret key for this particular Django installation. It is used to provide a seed in secret-key hashing
algorithms. Set this to a random string — the longer, the better. dj ango- adm n. py startproj ect creates one
automatically and most of the time you won’t need to change it

SEND_BROKEN_LINK_EMAILS

Default: Fal se

This setting indicates whether to send an email to the MANAGERS each time somebody visits a Django-powered
page that is 404-ed with a nonempty referer (i.e., a broken link). This is only used if ConrmonM ddl ewar e is
installed (see Chapter 15). See also | GNORABLE_404_STARTS and | GNORABLE_404_ENDS.

SERIALIZATION_MODULES

Default: Not defined.

Serialization is a feature still under heavy development. Refer to the online documentation at
http://www.djangoproject.com/documentation/0.96/serialization/ for more information.

SERVER_EMAIL

Default: ' r oot @ ocal host"'

This is the email address that error messages come from, such as those sent to ADM NS and MANAGERS.

SESSION_COOKIE_AGE

Default: 1209600 (two weeks, in seconds)

This is the age of session cookies, in seconds. See Chapter 12.

SESSION_COOKIE_DOMAIN

Default: None

This is the domain to use for session cookies. Set this to a string such as ". | awr ence. com' for cross-domain
cookies, or use None for a standard domain cookie. See Chapter 12.

SESSION_COOKIE_NAME

Default: ' sessi oni d'

This is the name of the cookie to use for sessions; it can be whatever you want. See Chapter 12.

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

http://www.djangoproject.com/documentation/0.96/serialization/

Appendix E: Settings

SESSION_COOKIE_SECURE

Default: Fal se

This setting indicates whether to use a secure cookie for the session cookie. If this is set to True, the cookie
will be marked as “secure,” which means browsers may ensure that the cookie is only sent under an HTTPS
connection. See Chapter 12.

SESSION_EXPIRE_AT_BROWSER_CLOSE

Default: Fal se

This setting indicates whether to expire the session when the user closes his browser. See Chapter 12.

SESSION_SAVE_EVERY REQUEST

Default: Fal se

This setting indicates whether to save the session data on every request. See Chapter 12.

SITE_ID

Default: Not defined

This is the ID, as an integer, of the current site in the dj ango_si t e database table. It is used so that
application data can hook into specific site(s) and a single database can manage content for multiple sites. See
Chapter 14.

TEMPLATE_CONTEXT_PROCESSORS

Default:

("dj ango. core. cont ext _processors. aut h",
"dj ango. core. cont ext _processors. debug”,
"dj ango. core. cont ext _processors.i 18n")

This is a tuple of callables that are used to populate the context in Request Cont ext . These callables take a
request object as their argument and return a dictionary of items to be merged into the context. See Chapter
10.

TEMPLATE_DEBUG

Default: Fal se

This Boolean turns template debug mode on and off. If it is True, the fancy error page will display a detailed
report for any Tenpl at eSynt axEr r or . This report contains the relevant snippet of the template, with the
appropriate line highlighted.

Note that Django only displays fancy error pages if DEBUG is Tr ue, so you’ll want to set that to take advantage
of this setting.

See also DEBUG.

TEMPLATE_DIRS

Default: () (empty tuple)

This is a list of locations of the template source files, in search order. Note that these paths should use Unix-
style forward slashes, even on Windows. See Chapters 4 and 10.

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

Appendix E: Settings

TEMPLATE_LOADERS

Default: (' dj ango. tenpl ate. | oaders.fil esystem | oad_tenpl ate_source',)

This is a tuple of callables (as strings) that know how to import templates from various sources. See Chapter
10.

TEMPLATE_STRING_IF_INVALID

Default: ' ' (Empty string)

This is output, as a string, that the template system should use for invalid (e.g., misspelled) variables. See
Chapter 10.

TEST_RUNNER

Default: ' dj ango. test.sinple.run_tests'

This is the name of the method to use for starting the test suite. It is used by Django’s testing framework,
which is covered online at http://www.djangoproject.com/documentation/0.96/testing/.

TEST_DATABASE_NAME

Default: None

This is the name of database to use when running the test suite. If a value of None is specified, the test
database will use the name 'test ' + settings. DATABASE _NAME. See the documentation for Django’s testing
framework, which is covered online at http://www.djangoproject.com/documentation/0.96/testing/.

TIME_FORMAT
Default: ' P (e.g., 4 p.m)

This is the default formatting to use for time fields on Django admin change-list pages — and, possibly, by
other parts of the system. It accepts the same format as the now tag (see Appendix F, Table F-2).

See also DATE_FORVAT, DATETI ME_FORVAT, TI ME_FORVAT, YEAR_MONTH_FORMAT, and MONTH_DAY_FORVAT.

TIME_ZONE

Default: ' Aneri ca/ Chi cago’

This is a string representing the time zone for this installation. Time zones are in the Unix-standard zi c
format. One relatively complete list of time zone strings can be found at
http://www.postgresql.org/docs/8.1/static/datetime-keywords.htmI#DATETIME-TIMEZONE-SET-TABLE.

This is the time zone to which Django will convert all dates/times — not necessarily the time zone of the
server. For example, one server may serve multiple Django-powered sites, each with a separate time-zone
setting.

Normally, Django sets the os. environ[' TZ'] variable to the time zone you specify in the Tl ME_ZONE setting.
Thus, all your views and models will automatically operate in the correct time zone. However, if you're using
the manually configuring settings (described above in the section titled “Using Settings Without Setting
DJANGO_SETTINGS_MODULE"), Django will not touch the TZ environment variable, and it will be up to you to
ensure your processes are running in the correct environment.

Note

Django cannot reliably use alternate time zones in a Windows environment. If you’re running
Django on Windows, this variable must be set to match the system time zone.

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

http://www.djangoproject.com/documentation/0.96/testing/
http://www.djangoproject.com/documentation/0.96/testing/
http://www.postgresql.org/docs/8.1/static/datetime-keywords.html#DATETIME-TIMEZONE-SET-TABLE

Appendix E: Settings

URL_VALIDATOR_USER_AGENT

Default: Oj ango/ <versi on> (http://ww. dj angoproj ect. cont)

This is the string to use as the User - Agent header when checking to see if URLs exist (see the verify_exists
option on URLFi el d; see Appendix B).

USE_ETAGS

Default: Fal se

This Boolean specifies whether to output the ETag header. It saves bandwidth but slows down performance.
This is only used if ConrmonM ddl ewar e is installed (see Chapter 15).

USE_I18N

Default: True

This Boolean specifies whether Django’s internationalization system (see Chapter 18) should be enabled. It
provides an easy way to turn off internationalization, for performance. If this is set to Fal se, Django will make
some optimizations so as not to load the internationalization machinery.

YEAR_MONTH_FORMAT

Default: ' F Y’

This is the default formatting to use for date fields on Django admin change-list pages — and, possibly, by
other parts of the system — in cases when only the year and month are displayed. It accepts the same format
as the now tag (see Appendix F).

For example, when a Django admin change-list page is being filtered by a date drill-down, the header for a
given month displays the month and the year. Different locales have different formats. For example, U.S.
English would use “January 2006,” whereas another locale might use “2006/January.”

See also DATE_FORVAT, DATETI ME_FORVAT, TI ME_FORVAT, and MONTH_DAY_FORNAT.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/appendixE/[2009.01.07. 10:43:04]

http://www.djangobook.com/en/1.0/appendixF/
http://www.djangobook.com/license/
http://mediatemple.net/

Appendix G: The django-admin Utility

The Dj angO BOOk « previous ¢ table of contents ¢ next »

Appendix G: The django-admin Utility
dj ango- adm n. py is Django’s command-line utility for administrative tasks. This appendix explains its many

powers.

You’'ll usually access dj ango- admi n. py through a project’s manage. py wrapper. nanage. py is automatically
created in each Django project and is a thin wrapper around dj ango- admni n. py. It takes care of two things for
you before delegating to dj ango- adni n. py:

= It puts your project’s package on sys. pat h.

= It sets the DJANGO_SETTI NGS_MODULE environment variable so that it points to your project’s setti ngs. py
file.

The dj ango- adni n. py script should be on your system path if you installed Django via its set up. py utility. If
it’s not on your path, you can find it in si t e- packages/ dj ango/ bi n within your Python installation. Consider
symlinking it from some place on your path, such as /usr/ 1| ocal / bi n.

Windows users, who do not have symlinking functionality available, can copy dj ango- adni n. py to a location
on their existing path or edit the PATH settings (under Settings ~TRA Control Panel ~TRA System ~TRA
Advanced ~TRA Environment) to point to its installed location.

Generally, when working on a single Django project, it's easier to use nanage. py. Use dj ango- admi n. py with
DIANGO_SETTI NGS_MODULE or the - - setti ngs command-line option, if you need to switch between multiple
Django settings files.

The command-line examples throughout this appendix use dj ango- admi n. py to be consistent, but any
example can use nmanage. py just as well.

Usage

The basic usage is:

dj ango- adm n. py action [options]
or:

manage. py action [options]

acti on should be one of the actions listed in this document. opti ons, which is optional, should be zero or
more of the options listed in this document.

Run dj ango- adni n. py - - hel p to display a help message that includes a terse list of all available actions and
options.

Most actions take a list of app names. An app name is the base name of the package containing your models.
For example, if your | NSTALLED APPS contains the string ' mysi te. bl og' , the app name is bl og.

Available Actions

The following sections cover the actions available to you.

http://www.djangobook.com/en/1.0/appendixG/[2009.01.07. 10:43:14]

http://www.djangobook.com/
http://www.djangobook.com/en/1.0/appendixF/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Appendix G: The django-admin Utility

adminindex [appname appname ...]

Prints the admin-index template snippet for the given application names. Use admin-index template snippets if
you want to customize the look and feel of your admin’s index page.

createcachetable [tablename]

Creates a cache table named t abl enane for use with the database cache back-end. See Chapter 13 for more
about caching.

dbshell

Runs the command-line client for the database engine specified in your DATABASE_ENG NE setting, with the
connection parameters specified in the settings DATABASE _USER, DATABASE_PASSWORD, and so forth.

= For PostgreSQL, this runs the psql command-line client.
= For MySQL, this runs the nysgql command-line client.

= For SQLite, this runs the sql i t e3 command-line client.

This command assumes the programs are on your PATH so that a simple call to the program name (psql ,
nysql , or sqgl i te3) will find the program in the right place. There’s no way to specify the location of the
program manually.

diffsettings

Displays differences between the current settings file and Django’s default settings.

Settings that don’t appear in the defaults are followed by " ###" . For example, the default settings don’t define
ROOT_URLCONF, so ROOT_URLCONF is followed by " ###" in the output of di ffsetti ngs.

Note that Django’s default settings live in dj ango. conf. gl obal _setti ngs, if you're ever curious to see the full

list of defaults.

dumpdata [appname appname ...]

Outputs to standard output all data in the database associated with the named application(s).

By default, the database will be dumped in JSON format. If you want the output to be in another format, use
the - - f or mat option (e.g., f or mat =xn). You may specify any Django serialization back-end (including any
user-specified serialization back-ends named in the SERI ALI ZATI ON_MODULES setting). The - - i ndent option
can be used to pretty-print the output.

If no application name is provided, all installed applications will be dumped.

The output of dunpdat a can be used as input for | oaddat a.

flush

Returns the database to the state it was in immediately after syncdb was executed. This means that all data
will be removed from the database, any postsynchronization handlers will be re-executed, and the
initial data fixture will be reinstalled.

inspectdb

Introspects the database tables in the database pointed to by the DATABASE_NAME setting and outputs a Django
model module (a nodel s. py file) to standard output.

Use this if you have a legacy database with which you’d like to use Django. The script will inspect the database

http://www.djangobook.com/en/1.0/appendixG/[2009.01.07. 10:43:14]

Appendix G: The django-admin Utility
and create a model for each table within it.

As you might expect, the created models will have an attribute for every field in the table. Note that
i nspect db has a few special cases in its field name output:

= If i nspect db cannot map a column’s type to a model field type, it will use Text Fi el d and will insert the
Python comment ' This field type is a guess.' next to the field in the generated model.

= If the database column name is a Python reserved word (such as ' pass', 'class', or'for'), inspectdb
will append ' _field to the attribute name. For example, if a table has a column ' for' , the generated
model will have a field ' for _fiel d' , with the db_col um attribute set to ' for' . i nspect db will insert the
Python comment ' Fi el d renaned because it was a Python reserved word.' next to the field.

This feature is meant as a shortcut, not as definitive model generation. After you run it, you’ll want to look
over the generated models yourself to make customizations. In particular, you’ll need to rearrange the models
so that models with relationships are ordered properly.

Primary keys are automatically introspected for PostgreSQL, MySQL, and SQLite, in which case Django puts in
the pri mary_key=Tr ue where needed.

i nspect db works with PostgreSQL, MySQL, and SQLite. Foreign key detection only works in PostgreSQL and

with certain types of MySQL tables.

loaddata [fixture fixture ...]

Searches for and loads the contents of the named fixture into the database.

A fixture is a collection of files that contain the serialized contents of the database. Each fixture has a unique
name; however, the files that comprise the fixture can be distributed over multiple directories, in multiple
applications.

Django will search in three locations for fixtures:

= In the fi xtur es directory of every installed application
= In any directory named in the FI XTURE_DI RS setting

= In the literal path named by the fixture

Django will load any and all fixtures it finds in these locations that match the provided fixture names.

If the named fixture has a file extension, only fixtures of that type will be loaded. For example, the following:
dj ango- adm n. py | oaddata nydata.j son

will only load JSON fixtures called nydat a. The fixture extension must correspond to the registered name of a
serializer (e.g., j son or xm).

If you omit the extension, Django will search all available fixture types for a matching fixture. For example, the
following:

dj ango- adnmi n. py | oaddata nydata

will look for any fixture of any fixture type called nydat a. If a fixture directory contained nydat a. j son, that
fixture would be loaded as a JSON fixture. However, if two fixtures with the same name but different fixture
types are discovered (e.g., if nydat a. j son and nydat a. xml were found in the same fixture directory), fixture
installation will be aborted, and any data installed in the call to | oaddat a will be removed from the database.

The fixtures that are named can include directory components. These directories will be included in the search
path. The following, for example:

dj ango- admi n. py | oaddata foo/ bar/nydata.json

http://www.djangobook.com/en/1.0/appendixG/[2009.01.07. 10:43:14]

Appendix G: The django-admin Utility

will search <appnane>/fi xt ures/ f oo/ bar/ nydat a. j son for each installed application,
<di rnane>/ f oo/ bar/ mydat a. j son for each directory in FI XTURE_DI RS, and the literal path
f oo/ bar/ nydat a. j son.

Note that the order in which fixture files are processed is undefined. However, all fixture data is installed as a
single transaction, so data in one fixture can reference data in another fixture. If the database back-end
supports row-level constraints, these constraints will be checked at the end of the transaction.

The dunpdat a command can be used to generate input for | oaddat a.

MySQL and Fixtures

Unfortunately, MySQL isn’t capable of completely supporting all the features of Django fixtures. If
you use MyISAM tables, MySQL doesn’t support transactions or constraints, so you won't get a
rollback if multiple transaction files are found, or validation of fixture data. If you use InnoDB
tables, you won’t be able to have any forward references in your data files — MySQL doesn’t
provide a mechanism to defer checking of row constraints until a transaction is committed.

reset [appname appname ..]

Executes the equivalent of sqgl reset for the given app names.

runfcgi [options]

Starts a set of FastCGI processes suitable for use with any Web server that supports the FastCGI protocol. See
Chapter 20 for more about deploying under FastCGI.

This command requires the Python FastCGIl module from f | up (http://www.djangoproject.com/r/flup/).

runserver [optional port number, or ipaddr:port]

Starts a lightweight development Web server on the local machine. By default, the server runs on port 8000 on
the IP address 127.0.0.1. You can pass in an IP address and port number explicitly.

If you run this script as a user with normal privileges (recommended), you might not have access to start a
port on a low port number. Low port numbers are reserved for the superuser (root).

Warning

Do not use this server in a production setting. It has not gone through security audits or
performance tests, and there are no plans to change that fact. Django’s developers are in the
business of making Web frameworks, not Web servers, so improving this server to be able to

handle a production environment is outside the scope of Django.

The development server automatically reloads Python code for each request, as needed. You don’t need to
restart the server for code changes to take effect.

When you start the server, and each time you change Python code while the server is running, the server will
validate all of your installed models. (See the upcoming section on the val i dat e command.) If the validator
finds errors, it will print them to standard output, but it won’t stop the server.

You can run as many servers as you want, as long as they’re on separate ports. Just execute
dj ango- admi n. py runserver more than once.

Note that the default IP address, 127.0.0.1, is not accessible from other machines on your network. To make
your development server viewable to other machines on the network, use its own IP address (e.g.,
192.168.2.1) or 0.0.0.0.

For example, to run the server on port 7000 on IP address 127.0.0.1, use this:

http://www.djangobook.com/en/1.0/appendixG/[2009.01.07. 10:43:14]

http://www.djangoproject.com/r/flup/

Appendix G: The django-admin Utility

dj ango- adm n. py runserver 7000
Or to run the server on port 7000 on IP address 1.2.3.4, use this:

dj ango- admi n. py runserver 1.2.3.4:7000

Serving Static Files with the Development Server

By default, the development server doesn’t serve any static files for your site (such as CSS files, images,
things under MEDI A_ROOT_URL, etc.). If you want to configure Django to serve static media, read about serving
static media at http://www.djangoproject.com/documentation/0.96/static_files/.

Turning Off Autoreload

To disable autoreloading of code while the development server is running, use the - - nor el oad option, like so:

dj ango- admi n. py runserver --norel oad

shell

Starts the Python interactive interpreter.

Django will use IPython (http://ipython.scipy.org/) if it's installed. If you have IPython installed and want to
force use of the “plain” Python interpreter, use the - - pl ai n option, like so:

dj ango- admi n. py shell --plain

sgl [appname appname ...]

Prints the CREATE TABLE SQL statements for the given app names.

sglall [appname appname ...]

Prints the CREATE TABLE and initial-data SQL statements for the given app names.

Refer to the description of sqgl cust omfor an explanation of how to specify initial data.

sqglclear [appname appname ...]

Prints the DROP TABLE SQL statements for the given app names.

sglcustom [appname appname ...]

Prints the custom SQL statements for the given app names.

For each model in each specified app, this command looks for the file <appnanme>/ sql / <nodel nane>. sql , where
<appnane> is the given app name and <nodel nane> is the model’s name in lowercase. For example, if you have
an app news that includes a St ory model, sqgl cust omwill attempt to read a file news/ sql / story. sql and
append it to the output of this command.

Each of the SQL files, if given, is expected to contain valid SQL. The SQL files are piped directly into the
database after all of the models’ table-creation statements have been executed. Use this SQL hook to make
any table modifications, or insert any SQL functions into the database.

Note that the order in which the SQL files are processed is undefined.

sglindexes [appname appname ...]

Prints the CREATE | NDEX SQL statements for the given app names.

http://www.djangobook.com/en/1.0/appendixG/[2009.01.07. 10:43:14]

http://www.djangoproject.com/documentation/0.96/static_files/
http://ipython.scipy.org/

Appendix G: The django-admin Utility

sglreset [appname appname ...]

Prints the DROP TABLE SQL, and then the CREATE TABLE SQL, for the given app names.

sglsequencereset [appname appname ...]

Prints the SQL statements for resetting sequences for the given app names.

You'll need this SQL only if you're using PostgreSQL and have inserted data by hand. When you do that,
PostgreSQL’s primary key sequences can get out of sync from what’s in the database, and the SQL emitted by
this command will clear it up.

startapp [appname]

Creates a Django application directory structure for the given app name in the current directory.

startproject [projectname]

Creates a Django project directory structure for the given project name in the current directory.

syncdb

Creates the database tables for all applications in | NSTALLED APPS whose tables have not already been
created.

Use this command when you’ve added new applications to your project and want to install them in the
database. This includes any applications shipped with Django that might be in | NSTALLED_APPS by default.
When you start a new project, run this command to install the default applications.

If you’re installing the dj ango. contri b. aut h application, syncdb will give you the option of creating a
superuser immediately. syncdb will also search for and install any fixture named i niti al _dat a. See the
documentation for | oaddat a for details on the specification of fixture data files.

test

Discovers and runs tests for all installed models. Testing was still under development when this book was being
written, so to learn more you’ll need to read the documentation online at
http://www.djangoproject.com/documentation/0.96/testing/.

validate

Validates all installed models (according to the | NSTALLED APPS setting) and prints validation errors to
standard output.

Available Options

The sections that follow outline the options that dj ango- adni n. py can take.

—settings

Example usage:

dj ango- admi n. py syncdb --settings=nysite.settings

Explicitly specifies the settings module to use. The settings module should be in Python package syntax (e.g.,

nysite.settings). If this isn't provided, dj ango- admi n. py will use the DJANGO _SETTI NGS_MODULE environment
variable.

http://www.djangobook.com/en/1.0/appendixG/[2009.01.07. 10:43:14]

http://www.djangoproject.com/documentation/0.96/testing/

Appendix G: The django-admin Utility

Note that this option is unnecessary in manage. py, because it takes care of setting DJANGO _SETTI NGS_MODULE
for you.

—pythonpath

Example usage:
dj ango- adnmi n. py syncdb --pythonpat h="/hone/ dj angopr oj ect s/ nypr oj ect

Adds the given filesystem path to the Python import search path. If this isn’t provided, dj ango- adni n. py will
use the PYTHONPATH environment variable.

Note that this option is unnecessary in manage. py, because it takes care of setting the Python path for you.

—format

Example usage:
dj ango- admi n. py dunpdata --format=xmni
Specifies the output format that will be used. The name provided must be the name of a registered serializer.

—help

Displays a help message that includes a terse list of all available actions and options.

—indent
Example usage:

dj ango- adnmi n. py dunpdata --indent=4

Specifies the number of spaces that will be used for indentation when pretty-printing output. By default, output
will not be pretty-printed. Pretty-printing will only be enabled if the indent option is provided.

—noinput

Indicates you will not be prompted for any input. This is useful if the dj ango- adni n script will be executed as
an unattended, automated script.

—noreload

Disables the use of the autoreloader when running the development server.

—version

Displays the current Django version.

Example output:

0.9.1
0.9.1 (SWN)

—verbosity

Example usage:

dj ango- adm n. py syncdb --verbosity=2

http://www.djangobook.com/en/1.0/appendixG/[2009.01.07. 10:43:14]

Appendix G: The django-admin Utility

Determines the amount of notification and debug information that will be printed to the console. 0 is no output,
1 is normal output, and 2 is verbose output.

—adminmedia
Example usage:

dj ango- adm n. py --adm nnedi a=/t np/ new- adm n- styl e/

Tells Django where to find the various CSS and JavaScript files for the admin interface when running the
development server. Normally these files are served out of the Django source tree, but because some
designers customize these files for their site, this option allows you to test against custom versions.

« previous ¢ table of contents ¢ next »

GNU Free Document License

http://www.djangobook.com/en/1.0/appendixG/[2009.01.07. 10:43:14]

http://www.djangobook.com/en/1.0/appendixF/
http://www.djangobook.com/license/
http://mediatemple.net/

Appendix H: Request and Response Objects

The Dj angO BOOk « previous ¢ table of contents

Appendix H: Request and Response Objects

Django uses request and response objects to pass state through the system.

When a page is requested, Django creates an Ht t pRequest object that contains metadata about the request.
Then Django loads the appropriate view, passing the Ht t pRequest as the first argument to the view function.
Each view is responsible for returning an Ht t pResponse object.

We’'ve used these objects often throughout the book; this appendix explains the complete APIs for
Ht t pRequest and Htt pResponse objects.

HttpRequest

Ht t pRequest represents a single HTTP request from some user-agent.

Much of the important information about the request is available as attributes on the Ht t pRequest instance
(see Table H-1). All attributes except sessi on should be considered read-only.

Table H-1. Attributes of HttpRequest Objects

Attribute Description

pat h A string representing the full path to the requested page, not including the domain
— for example, "/ nusi ¢/ bands/ t he_beat | es/".

nmet hod A string representing the HTTP method used in the request. This is guaranteed to
be uppercase. For example:

i f request.nmethod == ' GET":
do_sonet hi ng()
elif request.nethod == 'POST :

do_sonet hi ng_el se()

CGET A dictionary-like object containing all given HTTP GET parameters. See the
upcoming Quer yDi ct documentation.

POST A dictionary-like object containing all given HTTP POST parameters. See the
upcoming Quer yDi ct documentation.

It's possible that a request can come in via POST with an empty POST dictionary —
if, say, a form is requested via the POST HTTP method but does not include form
data. Therefore, you shouldn’t use i f request. POST to check for use of the POST
method; instead, use i f request. nethod == "POST" (see the net hod entry in this
table).

Note: POST does not include file-upload information. See Fl LES.
REQUEST For convenience, a dictionary-like object that searches POST first, and then GET.
Inspired by PHP’s $_REQUEST.

For example, if GET = {"nane": "john"} and POST = {"age": '34'},
REQUEST["nane"] would be "j ohn" , and REQUEST["age"] would be "34".

http://www.djangobook.com/en/1.0/appendixH/[2009.01.07. 10:43:22]

http://www.djangobook.com/
http://www.djangobook.com/about/
http://www.djangobook.com/about/comments/
http://www.djangobook.com/contact/
http://www.djangobook.com/errata/
http://www.amazon.com/gp/product/1590597257?ie=UTF8&tag=jacobianorg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590597257

Appendix H: Request and Response Objects

COCKI ES

FI LES

MVETA

user

sessi on

It’s strongly suggested that you use GET and POST instead of REQUEST, because the
former are more explicit.

A standard Python dictionary containing all cookies. Keys and values are strings.
See Chapter 12 for more on using cookies.

A dictionary-like object containing all uploaded files. Each key in FI LES is the nane
from the <i nput type="file" nanme="" />. Each value in FI LES is a standard
Python dictionary with the following three keys:

= filenanme: The name of the uploaded file, as a Python string

= content -type: The content type of the uploaded file.

= content : The raw content of the uploaded file.

Note that FI LES will contain data only if the request method was POST and the
<f or n> that posted to the request had enctype="nul ti part/form data".
Otherwise, FI LES will be a blank dictionary-like object.

A standard Python dictionary containing all available HTTP headers. Available
headers depend on the client and server, but here are some examples:

= CONTENT_LENGTH

= CONTENT_TYPE

= QUERY_STRI NG: The raw unparsed query string
= REMOTE_ADDR: The IP address of the client

= REMOTE_HOST: The hostname of the client

= SERVER _NAME: The hostname of the server.

= SERVER _PORT: The port of the server

Any HTTP headers are available in META as keys prefixed with HTTP_, for example:

» HTTP_ACCEPT ENCODI NG

» HTTP_ACCEPT LANGUAGE

= HTTP_HOST: The HTTP Host header sent by the client

= HTTP_REFERER: The referring page, if any

= HTTP_USER AGENT: The client’s user-agent string

= HTTP_X BENDER: The value of the X- Bender header, if set

A dj ango. contri b. aut h. nodel s. User object representing the currently logged-in
user. If the user isn’t currently logged in, user will be set to an instance of

dj ango. contri b. aut h. nodel s. AnonynousUser . You can tell them apart with

i s_authenticated(), like so:

if request.user.is_authenticated():

Do sonething for |ogged-in users.
el se:

Do sonething for anonynous users.

user is available only if your Django installation has the
Aut henti cati onM ddl ewar e activated.

For the complete details of authentication and users, see Chapter 12.
A readable and writable, dictionary-like object that represents the current session.

This is available only if your Django installation has session support activated. See
Chapter 12.

http://www.djangobook.com/en/1.0/appendixH/[2009.01.07. 10:43:22]

Appendix H: Request and Response Objects
raw_post _data The raw HTTP POST data. This is useful for advanced processing.

Request objects also have a few useful methods, as shown in Table H-2.

Table H-2. HttpRequest Methods

Method Description

__getitem _(key) Returns the GET/POST value for the given key, checking POST first, and then
GET. Raises KeyError if the key doesn’t exist.

This lets you use dictionary-accessing syntax on an Ht t pRequest instance.
For example, request ["fo00"] is the same as checking
request . POST["fo0"] and then request. GET["fo00"] .

has_key() Returns Tr ue or Fal se, designating whether r equest . GET or r equest . POST

has the given key.

get _full _path() Returns the pat h, plus an appended query string, if applicable. For example,
"/ musi c/ bands/t he_beat| es/ ?print =t rue"

is_secure() Returns Tr ue if the request is secure; that is, if it was made with HTTPS.

QueryDict Objects

In an Ht t pRequest object, the GET and POST attributes are instances of dj ango. htt p. QueryDi ct . QueryDi ct is
a dictionary-like class customized to deal with multiple values for the same key. This is necessary because
some HTML form elements, notably <sel ect nul tiple="nultipl e">, pass multiple values for the same key.

QueryDi ct instances are immutable, unless you create a copy() of them. That means you can’t change
attributes of request . POST and r equest . GET directly.

QueryDi ct implements the all standard dictionary methods, because it’s a subclass of dictionary. Exceptions
are outlined in Table H-3.

Table H-3. How QueryDicts Differ from Standard Dictionaries.

Method Differences from Standard dict Implementation

__getitem _ Works just like a dictionary. However, if the key has more than one value,
__getitem () returns the last value.

__setitem _ Sets the given key to [val ue] (a Python list whose single element is val ue). Note
that this, as other dictionary functions that have side effects, can be called only on
a mutable QueryDi ct (one that was created via copy()).

get () If the key has more than one value, get () returns the last value just like
__getitem .
updat e() Takes either a Quer yDi ct or standard dictionary. Unlike the standard dictionary’s

updat e method, this method appends to the current dictionary items rather than
replacing them:

>>> q = QueryDict('a=1")
>>> g = g.copy() # to nmake it nutable
>>> q.update({'a': '2'})

>>> g.getlist('a')
(1, 2]
>>> (['a'] # returns the |ast

['2"]

http://www.djangobook.com/en/1.0/appendixH/[2009.01.07. 10:43:22]

Appendix H: Request and Response Objects

itens()

val ues()

Just like the standard dictionary i t ens() method, except this uses the same last-

value logic as __getiten()_ :

>>> q = QueryDict('a=1&a=2&a=3")
>>> (. itens()

[(ra, "3)]

Just like the standard dictionary val ues() method, except this uses the same

last-value logic as __getitem()__ .

In addition, Quer yDi ct has the methods shown in Table H-4.

H-4. Extra (Nondictionary) QueryDict Methods

Method

copy()

getli st (key)

setlist(key, list)
appendl i st (key, item

setlistdefaul t (key, I)

lists()

url encode()

A Complete Example

For example, given this HTML form:

<form action="/foo/ bar/"

Description

Returns a copy of the object, using copy. deepcopy() from the Python
standard library. The copy will be mutable — that is, you can change
its values.

Returns the data with the requested key, as a Python list. Returns an
empty list if the key doesn’t exist. It's guaranteed to return a list of
some sort.

Sets the given key to | i st _ (unlike __setitem_()).
Appends an item to the internal list associated with key.

Just like set def aul t , except it takes a list of values instead of a
single value.

Like i tens() , except it includes all values, as a list, for each member
of the dictionary. For example:

>>> q = QueryDict('a=1&a=28&a=3")
>>> q.lists()
[Ca, ["1, "2, "3])]

Returns a string of the data in query-string format (e.g.,
"a=28&b=38&b=5").

nmet hod="post " >

<i nput type="text" nane="your nane" />

<select multiple="multiple"

nane="bands" >

<option val ue="beat!l es">The Beat| es</option>
<option val ue="who">The \Wo</option>
<option val ue="zonbi es">The Zonbi es</ opti on>

</ sel ect >

<i nput type="submt" />

</ fornme

if the user enters "John Snith" in the your _namne field and selects both “The Beatles” and “The Zombies” in

the multiple select box, here’s what Django’s request object would have:

http://www.djangobook.com/en/1.0/appendixH/[2009.01.07. 10:43:22]

Appendix H: Request and Response Objects

>>> request. GET

{}

>>> request. POST

{"your_nane': ['John Smith'], "bands': ['beatles', 'zonbies']}
>>> request. POST[' your _nane']

"John Snith'

>>> request. POST[' bands']

' zonbi es'

>>> request. POST. getlist (' bands')

['beatles', 'zonbies']

>>> request. POST. get (' your _nane', 'Adrian')

*John Smith'

>>> request. POST. get (' nonexi stent_field , 'Nowhere Man')
' Nowher e Man'

Implementation Note:

The CGET, POST, COXI ES, FI LES, META, REQUEST, r aw_post _dat a, and user attributes are all lazily
loaded. That means Django doesn’t spend resources calculating the values of those attributes until
your code requests them.

HttpResponse

In contrast to Ht t pRequest objects, which are created automatically by Django, H t pResponse objects are
your responsibility. Each view you write is responsible for instantiating, populating, and returning an
Ht t pResponse.

The Ht t pResponse class lives at dj ango. http. Ht t pResponse.

Construction HttpResponses

Typically, you’ll construct an Ht t pResponse to pass the contents of the page, as a string, to the H t pResponse
constructor:

>>> response = HitpResponse("Here's the text of the Wb page.")
>>> response = Htt pResponse("Text only, please.", ninetype="text/plain")

But if you want to add content incrementally, you can use r esponse as a filelike object:

>>> response = Htt pResponse()
>>> response.wite("<p>Here's the text of the Wb page. </ p>")
>>> response. wite("<p>Here's another paragraph. </ p>")

You can pass Htt pResponse an iterator rather than passing it hard-coded strings. If you use this technique,
follow these guidelines:

= The iterator should return strings.

= If an Ht t pResponse has been initialized with an iterator as its content, you can’t use the Htt pResponse
instance as a filelike object. Doing so will raise Excepti on.

Finally, note that Ht t pResponse implements a wite() method, which makes is suitable for use anywhere that
Python expects a filelike object. See Chapter 11 for some examples of using this technique.

Setting Headers

You can add and delete headers using dictionary syntax:

http://www.djangobook.com/en/1.0/appendixH/[2009.01.07. 10:43:22]

Appendix H: Request and Response Objects

>>> response = Htt pResponse()

>>> response[' X-DIANGO] = "It's the best."
>>> del response[' X- PHP']

>>> response[' X- DDANGO]

"It's the best."

You can also use has_header (header) to check for the existence of a header.

Avoid setting Cooki e headers by hand; instead, see Chapter 12 for instructions on how cookies work in Django.

HttpResponse Subclasses

Django includes a number of Ht t pResponse subclasses that handle different types of HTTP responses (see
Table H-5). Like Ht t pResponse, these subclasses live in dj ango. http.

Table H-5. HttpResponse Subclasses

Class Description

Ht t pResponseRedi r ect The constructor takes a single argument: the path to
redirect to. This can be a fully qualified URL (e.qg.,
"http://search. yahoo. conl') or an absolute URL with no
domain (e.g., '/ search/'). Note that this returns an HTTP
status code 302.

Ht t pResponsePer manent Redi r ect Like Ht t pResponseRedi r ect , but it returns a permanent
redirect (HTTP status code 301) instead of a “found”
redirect (status code 302).

Ht t pResponseNot Modi fi ed The constructor doesn’t take any arguments. Use this to
designate that a page hasn’t been modified since the user’s
last request.

Ht t pResponseBadRequest Acts just like Ht t pResponse but uses a 400 status code.
Ht t pResponseNot Found Acts just like Ht t pResponse but uses a 404 status code.
Ht t pResponseFor bi dden Acts just like Ht t pResponse but uses a 403 status code.
Ht t pResponseNot Al | owed Like Ht t pResponse, but uses a 405 status code. It takes a

single, required argument: a list of permitted methods
(e.g., [' GET', 'POST]).

Ht t pResponseGone Acts just like Ht t pResponse but uses a 410 status code.

Ht t pResponseSer ver Err or Acts just like Ht t pResponse but uses a 500 status code.

You can, of course, define your own Ht t pResponse subclass to support different types of responses not
supported out of the box.

Returning Errors

Returning HTTP error codes in Django is easy. We've already mentioned the Ht t pResponseNot Found,
Ht t pResponseFor bi dden, Ht t pResponseSer ver Error, and other subclasses. Just return an instance of one of
those subclasses instead of a normal Htt pResponse in order to signify an error, for example:

def ny_view(request):
#o.o..
if foo:
return HttpResponseNot Found(' <hl>Page not found</hl>")

http://www.djangobook.com/en/1.0/appendixH/[2009.01.07. 10:43:22]

Appendix H: Request and Response Objects

el se:
return HttpResponse(' <hl>Page was found</hl>")

Because a 404 error is by far the most common HTTP error, there’s an easier way to handle it.

When you return an error such as Ht t pResponseNot Found, you’re responsible for defining the HTML of the
resulting error page:

return Htt pResponseNot Found(' <hl>Page not found</hl>")

For convenience, and because it's a good idea to have a consistent 404 error page across your site, Django
provides an Htt p404 exception. If you raise Htt p404 at any point in a view function, Django will catch it and
return the standard error page for your application, along with an HTTP error code 404.

Here’s an example:

from dj ango. http inport Http404

def detail (request, poll _id):
try:
p = Poll.objects. get (pk=poll _id)
except Pol | . DoesNot EXi st :
rai se Htp404
return render _to _response('polls/detail.htm', {'poll': p})

In order to use the Ht t p404 exception to its fullest, you should create a template that is displayed when a 404
error is raised. This template should be called 404. ht i , and it should be located in the top level of your
template tree.

Customizing the 404 (Not Found) View

When you raise an Htt p404 exception, Django loads a special view devoted to handling 404 errors. By default,
it's the view dj ango. vi ews. def aul t s. page_not _f ound, which loads and renders the template 404. ht ni .

This means you need to define a 404. ht il template in your root template directory. This template will be used
for all 404 errors.

This page_not _f ound view should suffice for 99% of Web applications, but if you want to override the 404
view, you can specify handl er 404 in your URLconf, like so:

from dj ango. conf.urls.defaults inport *

url patterns = patterns('’',

handl er404 = 'nmnysite.views. ny_custom 404 _vi ew

Behind the scenes, Django determines the 404 view by looking for handl er 404. By default, URLconfs contain
the following line:

from dj ango. conf.urls.defaults inport *

That takes care of setting handl er 404 in the current module. As you can see in
dj ango/ conf/url s/ def aul ts. py, handl er 404 is set to ' dj ango. vi ews. def aul t s. page_not _found' by
default.

There are three things to note about 404 views:

http://www.djangobook.com/en/1.0/appendixH/[2009.01.07. 10:43:22]

Appendix H: Request and Response Objects

= The 404 view is also called if Django doesn’t find a match after checking every regular expression in the
URLconf.

= If you don’t define your own 404 view — and simply use the default, which is recommended — you still
have one obligation: to create a 404. ht Ml template in the root of your template directory. The default
404 view will use that template for all 404 errors.

= If DEBUG is set to True (in your settings module), then your 404 view will never be used, and the
traceback will be displayed instead.

Customizing the 500 (Server Error) View

Similarly, Django executes special-case behavior in the case of runtime errors in view code. If a view results in
an exception, Django will, by default, call the view dj ango. vi ews. def aul t s. server _error, which loads and
renders the template 500. ht n .

This means you need to define a 500. ht M template in your root template directory. This template will be used
for all server errors.

This server _error view should suffice for 99% of Web applications, but if you want to override the view, you
can specify handl er 500 in your URLconf, like so:

from dj ango. conf.urls.defaults inport *

url patterns = patterns('"',

handl er500 = 'nysite.views.ny_customerror_view

« previous ¢ table of contents

GNU Free Document License

http://www.djangobook.com/en/1.0/appendixH/[2009.01.07. 10:43:22]

http://www.djangobook.com/license/
http://mediatemple.net/

	The Django Book

	The Django Book
	Chapter 1: Introduction to Django
	Chapter 2: Getting Started
	Chapter 3: The Basics of Dynamic Web Pages
	Chapter 4: The Django Template System
	Chapter 5: Interacting with a Database: Models
	Chapter 6: The Django Administration Site
	Chapter 7: Form Processing
	Chapter 8: Advanced Views and URLconfs
	Chapter 9: Generic Views
	Chapter 10: Extending the Template Engine
	Chapter 11: Generating Non-HTML Content
	Chapter 12: Sessions, Users, and Registration
	Chapter 13: Caching
	Chapter 14: Other Contributed Subframeworks
	Chapter 15: Middleware
	Chapter 16: Integrating with Legacy Databases and Applications
	Chapter 17: Extending Django's Admin Interface
	Chapter 18: Internationalization
	Chapter 19: Security
	Chapter 20: Deploying Django
	Appendix A: Case Studies
	Appendix B: Model Definition Reference
	Appendix C: Database API Reference
	Appendix D: Generic View Reference
	Appendix E: Settings
	Appendix G: The django-admin Utility
	Appendix H: Request and Response Objects

